

Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI Entwurfssysteme, Diagnostik und Architektur

Entwurf und Implementierung von parametrierbaren Filteralgorithmen für die digitale Ausleseelektronik des Flüssig-Argon-Kalorimeters des ATLAS-Detektors am CERN

Zwischenvortrag zur Diplomarbeit

Max Köhler max.koehler@mailbox.tu-dresden.de

Dresden, 21.03.2012

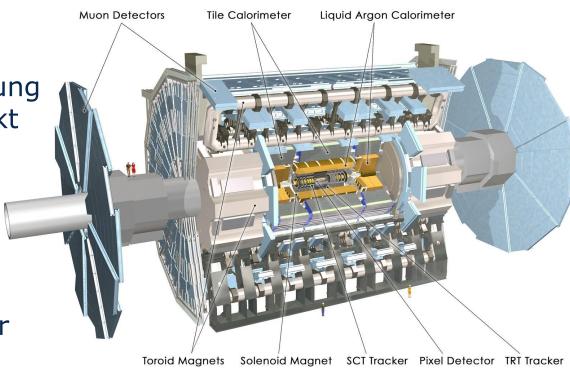
Gliederung

- (0) ATLAS-Experiment
- (1) Motivation
- (2) Filteransätze
- (3) Filterbewertung
- (4) Ausblick

LHC (Large Hadron Collider)

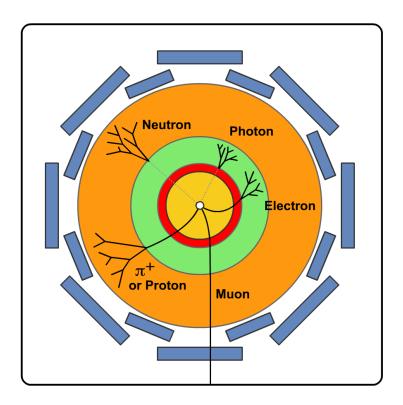
- größter und stärkster Teilchenbeschleuniger der Welt
- 26,7 km langer Tunnel
- 8 Oktanten f
 ür verschiedene Aufgaben
- 1232 Dipolmagnete für Formung des Ringes
- 4 große, 2 kleine Experimente
- komplette Füllung: 2808 / 3564 Pakete
- Abstand zwischen Paketen: 25 ns
- ausgelegte Luminosität: 10³⁴ cm⁻²s⁻¹

ATLAS-Experiment » Motivation » Filteransätze » Filterbewertung » Ausblick


ATLAS (A Toroidal LHC ApparatuS)

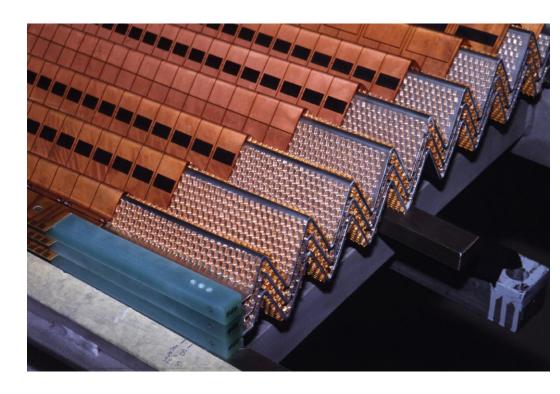
Vielzweck-Detektor

 zylindrische Anordnung um Interaktionspunkt


Bestimmung von

- Flugbahn
- Ladung
- Energie
- Datenauslese über mehrstufigen Trigger

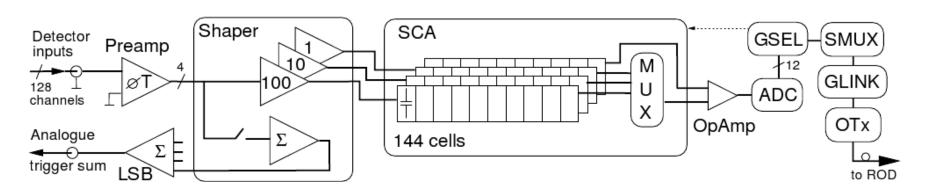
ATLAS (A Toroidal LHC ApparatuS)


- Erkennung der Teilchen über Verhalten in Teildetektoren
- Bestimmung fehlender Energiemengen
- endgültige Auswertung im Rechenzentrum aus den aufgezeichneten Daten

ATLAS-Experiment » Motivation » Filteransätze » Filterbewertung » Ausblick

Flüssig-Argon-Kalorimeter

- Detektion von geladenen Teilchen
- Auslösen von Elektronenschauern aus Bleiplatten
- Ionisation von Argon durch Schauerelektronen
- Messung von Strom über Elektroden

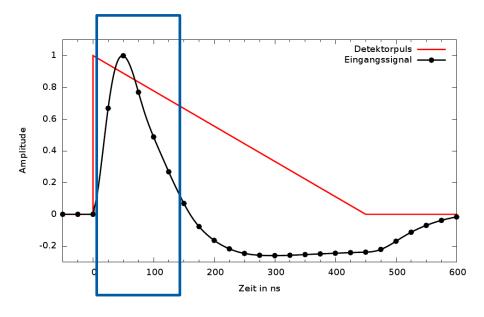


ATLAS-Experiment » Motivation » Filteransätze » Filterbewertung » Ausblick

Ausleseelektronik

- 182.468 Zellen
- 1524 Front End Boards im Detektor

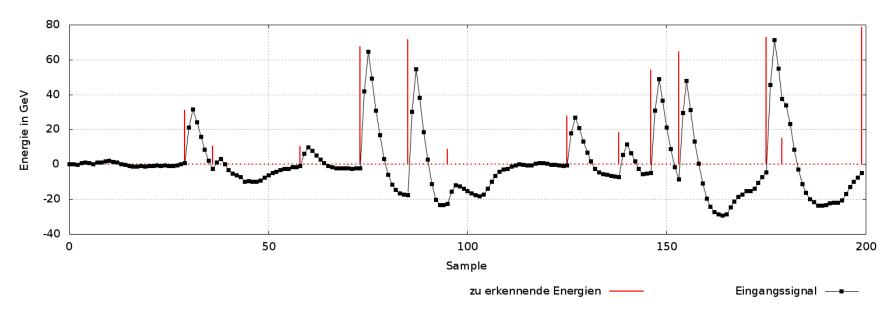
- Abtastung mit 40 MHz
- optische Übertragung zu 192 RODs (Read Out Driver)



[3]

Zielstellung

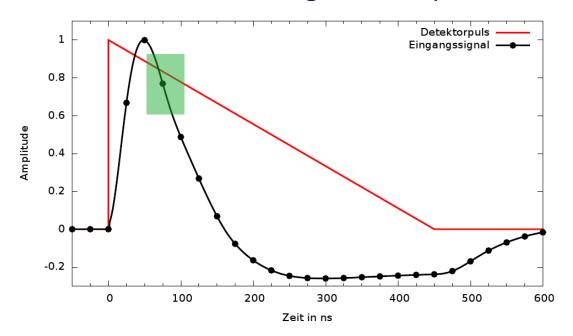
- Erkennung des roten Maximums in den schwarzen Messwerten
- verschiedene
 Verzögerungszeiten
- Probleme
 - Überschneidung mehrerer Impulse
 - Impulse durch Pileup
 - Rauschen


aktueller FIR-Filter

LHC Upgrade

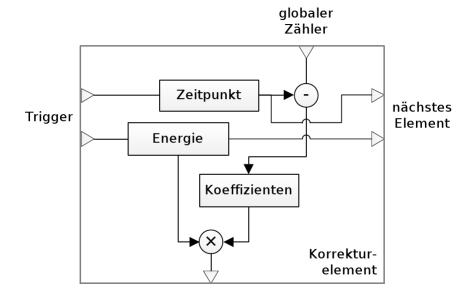
- Erhöhung der Luminosität um eine Größenordnung
- Austausch Messelektronik

- kontinuierliches Auslesen
- mehr Überschneidungen und Pileup


Festlegungen

- nur eine Impulsform für die Summe von 4 Zellen
- Rauschen als AWGN mit 80 MeV Varianz
- Eventrate = 0,02
- Pileup ≤ 14 GeV
- Energien ≤ 80 GeV
- vorzeichenlose zwölf Bit als Eingangswert
- Offset f
 ür negativen Bereich (Pedestal)
- Fokus auf Erkennung aller Impulse
- Latenz von höchstens 2 Kollisionen (50 ns)

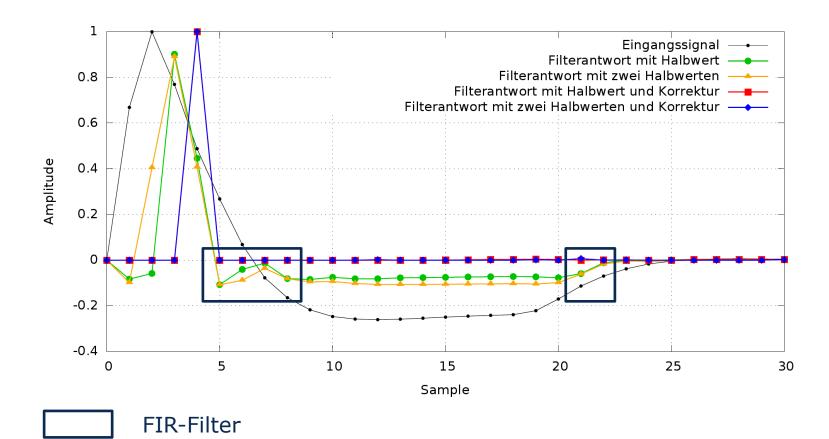
Heuristik-Filter


- Erkennung Maximum über 1. Ableitung fehleranfällig
- Gültigkeitsbereich als Filterbedingung
- Korrekturwert f
 ür nachfolgende Impulse

Heuristik-Filter

- nach Festlegungen 5 mögliche Überschneidungen
- 8 Speicherplätze für Ausgleich neg. Bereich
- Additionsbaum aus Korrekturelementen

Wiener-Filter


- Einsatzgebiete: Signalrekonstruktion, Kanalkompensierung
- vergrößert Signal-Rausch-Abstand
- Vorgabe eines Signales x(m)
- Realisierung als FIR-Filter der Länge P

$$\tilde{x}(m) = \sum_{k=0}^{P-1} a_k y(m-k) = a^T y$$

- Berechnung über mittlere quadratische Abweichung $E[e^2(m)] = E[x(m) a^T y]$
- Simulationsdaten als Basis für Berechnung

Wiener-Filter

Güte

Definition eines Qualitätsfaktors (skaliert auf [0,1])

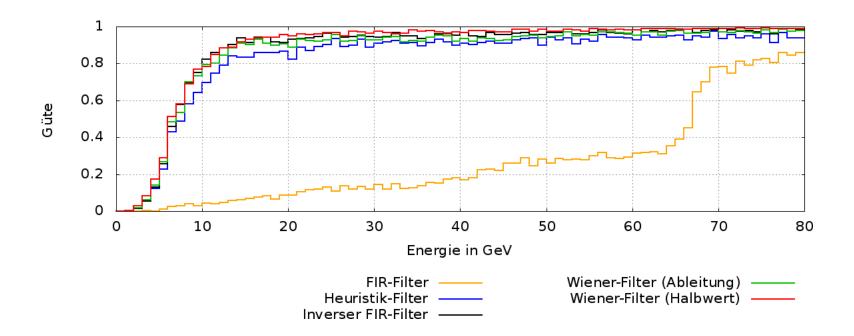
$$G = L \cdot R \cdot F$$

mit den Teilgrößen:

Erkennungsrate

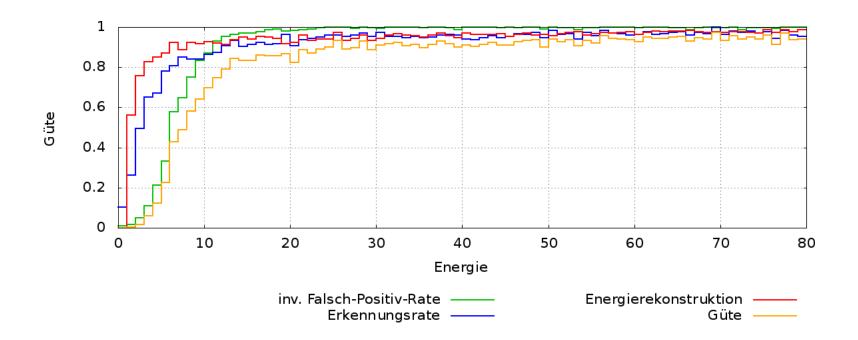
$$L = 1 - \frac{l}{N}$$

Energierekonstruktion

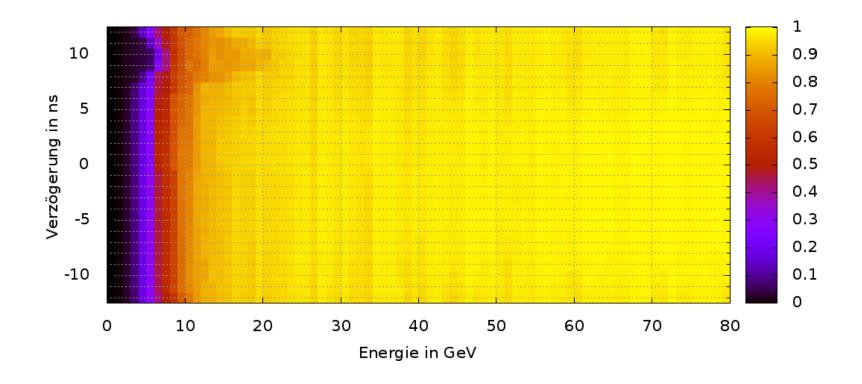

$$R = 1 - \left| \frac{E_{Filter} - E_{Test}}{E_{Test}} \right|$$

inverse Falsch-Positiv-Rate

$$F = 1 - \frac{f}{f + N}$$


ATLAS-Experiment » Motivation » Filteransätze » Filterbewertung » Ausblick

Übersicht Filteransätze



Güte des Heuristik-Filters

Verzögerungszeiten Wiener-Filter (Halbwert)

bisherige Ergebnisse

- Stabilität der Filter gewährleistet
- minimale Abweichungen bei anderen Abtastzeitpunkten
- Filterstruktur kann für mehrere Detektorzellen verwendet werden (Multichannel)
- Latenz beträgt maximal 9 Takte
 - Subtraktion Pedestal (1)
 - Vorfilterung (3)
 - Addition Korrekturwert (1)
 - Triggerbedingung auswerten (1)
 - Korrektur Energie (3)
- 8 (Heuristik-Filter) bzw. 16 (Wiener-Filter) Multiplikationen benötigt

Ausblick

- Umstieg auf Festkommaformat (Festlegung Bitbreiten)
- wiederholte Untersuchung auf Stabilität, Güte
- Implementierung f
 ür Virtex-5
- Prüfung mit den Testdaten in Hardware

Quellen

[1]	ATLAS-Experiment Photos http://www.atlas.ch/photos/
[2]	ATLAS Experiment Experiment eTour http://www.atlas.ch/etours_exper/
[3]	Buchanan, N J. u.a.: ATLAS liquid argon calorimeter front end electronics. In: Journal of Instrumentation 3 (2008) Nr. 9
[4]	The ATLAS Collaboration: The ATLAS Experiment at the CERN Large Hadron Collider. In: Journal of Instrumentration 3 (2008) Nr. 8
[5]	The ATLAS Collaboration: ATLAS Fact Sheet http://www.atlas.ch/fact-sheets.html
[6]	Vaseghu, Saeed V.: Adcanced Signal Processing and digital noise reduction. Stuttgard; Leipzig: Teubne, 1996.