TUD Department of VLSI-Design, Diagnostic and Architecture
Department Seminar - Wed.12.Jun.2013

Transputer Architecture

the Fascination of early, true Parallel Computing (198 3)

INF 1096 - 2:50pm-4:20pm
Speaker: Dipl.-Ing. Uwe Mielke

the Transputer & me ...

 |'ve graduated 1984 at TU limenau,

 my Diploma thesis was about ,the formal Petri-
Net description and programming of a real
time operating system kernel for embedded
applications “ @ Z80 (8bit CPU).

st roke s Die Mikrocomputer-Zeitschrift

Transputerring aus Miinchen:

« Same time the Transputer appeared! SuperreChner
e AMAZING !l Realtime in Silicon ! pm— o b2

Semantisches Netz in Lisp
FlieBkomma-Arithmetik
Modula-2-Programm

11/88

Praxis:
Hefmut Grubmiiller, Helmut Heller, Klaus Schulten A/D-Wandler-Dynamik

PC-Technik:

L] L3 L] 66 .
Eine Cray fiir ,jedermann
Supercomputer aus Miinchen: Eine Cray fiir 100 000 DM Tost:

Datenbank Paradox
Flachbettplotter
80386-Workstation
Schnellste Datenbank
fiir Atari ST

. No wonder that | liked to read such papers all over the years... Macintosh:

Programmier-

sprache
Hypertalk

« Since 2006 I'm collecting Transputer infos & artefacts for their
revitalization © ... Your questions? > uwe.mielke@infineon.com

- Target for next 60 Min.s: ...give you an idea about the
impressive capabilities of the Transputer Architecture...

Introduction

« INMOS & the IBM PC Era
 Transputer Foundations

e The birth of the T414
Transputer Architecture
e Hardware Detalils

e Instruction Set
 Process Model
Occam in Silicon
 Process Example

» Transputer Execution
Outlook

e (missing topics)

. some technical trends 198x, INMOS History
. CSP & Occam, Persona
;1983

. CPU, Registers, Address Space, Links
: Format, PFix & NFix, OpCodes

. Queues, Events, Descheduling Points

: Buffer Process

. Input & Output Communication

- T9000, IEEE-1355, Occam-Pi, ST20, XMQOS

1. Introduction

parsytec cigacluster

Supercomputer zum Anfassen

... heute (seit 2004) im Heinz Nixdorf Computer
Museumsforum in Paderborn.

Das System hatte zwolf Jahre (1992-2004) im
PC? (Paderborn Center for Parallel Computing)
bis zuletzt treue Dienste geleistet.

1992 stand der Parsytec-GC auf Platz 259 in
der Liste der Top500 Supercomputer.

Die Rechenleistung der 1024 Transputer a 30
MHz mit je 4,4 MFLOP/s, also insgesamt etwa
4,5 GFLOP/s, wird heutzutage von jedem
bessern Laptop erreicht -- der GC bendtigte
dafur ein Gehause von 2,6 m H6he und 2,53 m
Breite.

c't Nov.2004

1.1 the IBM PC Era
technical Trends ~ 198x

1983
1986
1989
1992
1996
2000
2003

cyc time

250 ns

0.25 220 ns
1 190 ns

4 165 ns

16 145 ns
64 120 ns
256 100 ns
1024 60 ns

Transistors
Per Die

1
2 4 1965 Actual Data

10°1 = MOS Arrays 4 MOS Lcil-gic 1975 Actual Data
108 1975 Projection : :

107 i
A Microprocessor
108

108

104
103
102 < INMOS Ltd.

10°
10°

"
F
",

1960 1865 1870 1875 1880 1985 1990 1985 2000 2005 2010

1981: IBM-PC, i8088, 4.77MHz, 512kB RAM, price: 5000US$

1984: PC-AT, i286, 6MHz, 640kB RAM, 20MB HDD, price: 4000US$
1985: C++ object oriented Language came up...

1987: IBM/PS2, i386, 16MHz, 4MB RAM, 40MB HDD, price: 3000US$
1989: 1486 & i860 released same time...

1990: Windows 3.0 released (on top of MS-DOS 6.2)

1.2 Transputer Foundations

CSP & Occam

Communicating Sequential Processes (CSP) ...

« was first described in a 1978 paper by C. A. R. Hoare. It evolved further in
parallel with the development of Occam at INMOS.

The full theoretical version of the CSP calculus was initially presented from
in a 1984 article by Brookes, Hoare, and Roscoe, and later in Hoare's book
Communicating Sequential Processes, which was published in 1985.
OCCAM as Programming Language ...

« was developed by David May at INMOS ~1980 together with the University
of Oxford (C.A.R. ,Tony* Hoare) in terms of formal and provable

CHAN c: " VAR chi: in
PAR * VAR ch2: *
WHILE TRUE SEQ
VAR ch: ch in 7 chi
SEQ WHILE TRUE chl ch2
in 7 ch [2T
c !l ch PAR
WHILE TRUE ch in 7 ch? v
VAR ch: out | chil out
SEQ v PAR
¢ 7 ch out in 7 chi
out ! ch out ! ch?2

1.2 Transputer Foundations

Occam

Statements:

« A Process is a piece of code having an Input and providing an Output.
 Processes communicate by Point-to-Point Messages (1...n Bytes) via Channels.
« A Channel is an Address in Memory on the same ... or another Transputer.

A Channel between 2 Transputers is formed by a serial Link. The Link will
automatically drop (,DMA*) the Message in the memory of the other Transputer.

« Communication will be synchronized, i.e. when sender AND receiver both are ready.
The Process which is ready for Communication first ... has to wait for its partner.

 The programmer has not to take care about how Messages are transfered !

* Process execution on Transputers is Event-driven, i.e. Processes which are waiting
for an Event do not consume any processor time. Events can be caused by
Communication, Timer-Setup or extenal Interrupt(s).

« Occam provides all necessary primitives for Process Syncronization (incl. Start, End,
Alternative, ...) and Process Communication.

 The programmer should focus on his Program Structure & Algorithms !

1.2 Transputer Foundations

Occam

« OCCAM enables a system to be described as a collection of concurrent processes,
which communicate with each other through channels.

« OCCAM programs are built from three primitive processes:

— X 1= exp assign expression exp to variable x
— chl ! exp output expression exp to channel chl
— ch2 ? x input from channel ch2 to variable x

« The primitive processes are combined to form constructs:

— SEQ uential execute processes one after another
— PAR allel execute processes concurrently
— ALT ernative execute only the first ready process

« | Fand WHI LE and CASE constructs are also provided.

A construct is itself a process, and may be used as a component of another
construct.

(see Links for free download in Appendix)

1.2 Transputer Foundations

CSP & Occam

Communication via Channels in Occam ...
can be between 2 processes on the same transputer or between 2

processes on different transputers,

looks for the programmer all like the same (fully transparent),
Is synchronized, i.e. if sender and receiver both are ready the

communication takes place.

[Process 1]

T Channel

A 4

[Process 2]

Transputer

Link

A 4

Process 1

Transputer

Process 2

Transputer

1.2 Transputer Foundations
Persona

multiplied unnecessarily.,
- keep it simple !

lann Barron (born in June 1936) Tony (C.A.R.) Hoare (born 11.Jan.1934) David May (born 24.Feb.1951)
Developed several Mini Computers, Quicksort algorithm originator. Since Joined 1978 INMOS microcomputer
including the ,Modulat-One". Visioneer 1977 Professor of Computer Science at architecture team, since 1995 Prof.
and entrepreneur, initial founder of University of Oxford ... today Fellow at of Computer Science at Bristol Uni,
INMOS and CEO. Microsoft 2006 Co-Founder of XMOS, CTO.
....what they all wanted was a new simplicity in computers , In their structure

and in the languages used to program them. In this conte xt simplicity need not
be the enemy of performance.”

[LR85] M.McLean and T.Rowland ,The Challenge of the Transputer*,
Chapter 9 from ,THE INMOS SAGA - A Triumph of National Enterprise?*, © 1985

1.3 T414

Birthday 1983

1982 : the ,Simple-42“ design completed Technology: 1.5um CMOS
1983 : successfully 1st prototyping of T414A Clock (int.): 15...20MHz
1984 : redesign T414B (2 bugfixes) Chip Size: 8.5 x 8.3mm2
1985 : volume production Power Supply : ~ +5V 5%
Packaging: CPGA 84
Production: 1985
Price (1886): 27?7
— CPU
RAM L I
| LINKS
k J
MEMORY INTERFACE

IMS T414

D.May: ,Occam and the Transputer are designed for each other. The
mathematical formalism of Occam provides the concurrency- and
communication-model for the Transputer‘s hardware*

2.1 Hardware

1800, T805

S
Mantissa ALU
64bit Registers
normalizing Shifter

M-MicroCode

32bit
Registers

e

32bit Memory Interface .

————
{ { ST HIT ST S { ”.-t*" ‘rg; '

Technology: 1.5um CMOS
Clock (int.): 20MHz
Chip Size: 8.5 x 10.7mm?
Power Supply : +5V 5%
Packaging: CPGA 84
Production: 1988
Price (Nov.1988). 1042,25 DM
FPU
I
_— CPU
RAM |g—] I
__» LINKS
k J
MEMOCRY INTERFACE

IMS TBo0

2.1 Hardware

T805 Block Diagram

32bit CPU + 64bit FPU
most instructions only 1 clock

Included: Process Scheduler
w/ internal Communication
Channels, Links and Timers.

included: 4KByte SRAM, one
clock cycle access time,
register like quality.

included: Memory Interface
(programable) for easy to use
RAS+CAS generation and
direct connection of 8...16
dRAM Devices, full 4GByte
Address Space.

Event -Handler for fast,
deterministic Interrupt

response time: 950ns@20MHz

Floating-point unit

VCC ——
GND —— E
CapPlus — :
(), 2,
Reset —
Analyse —>-| System
Errorln —| services
Error <—— Link -~ Iﬁ@nlﬁggeciall
BOOtFrOCI?igﬁ ._;.__)— services T_n L;Eklzgggiial
P ——))
ProcSpeedSelect0 @ Uik <—— Linkino
Timers interface > LinkOut0
T Link f=—— LinkInl
4 Kbytes : interface }—— LinkCutl
) of
_ :
DisableIntRam on-chip Uk e Linkin?
RAM interface |——s LinkOut2
ProcClockOut —e—— Link f==—— LinkIn3
tll\?/?tM\?Vm}ggkg —~ interface |——— LinkOut3
notMemWrB(-3 ——— _
notMemRd <—— Eyiernal <—— EventReq
notMemRl <—— ooy Event |— EventAck
RefreshPending —<— . ; |——— EventWaiting
MomWait ——> interface | L
MemConfig —> MemnotWrDO0
MemGranted —<— MemAD2Z-31

2.1 Hardware Detalls

CPU: Registers

The CPU contains: Processor Registers i
« sequential 32bit Integer Processor | II i
. : ' MSB LSB :

* (micro-coded) Scheduler & Timers : !
_ ! Areg ErrorFlag :

« Event Logic : :
Reverse Polish Notation ! Breg HaltonErrorFiag

Processor Registers: | Creg BreakEnableFlag
e Evaluation Stack (RPN) : Areg, Breg, Creg i
* Workspace Pointer: Wptr Wptr Dreg |
« Instruction Pointer: Iptr | Iptr Ereg |
« Operand Register: Oreg i Oreg StatusReg |

. Flags: Error, HaltOnError, BreakeEnabe &+ —mMmMm@@™@™™™ ~ ———

« Internal Registers: Dreg, Ereg, StatusReg ittt :
| Scheduler and Timer Registers |

Scheduler and Timer Registers i

« Front- and Back-Pointers of high and low priority FptrO Fptrl
process queues: FptrX , BprtX i Bptr0 Bptrl i
« Timer Counter (actual) and Timer Next Event ! ClockReg0 ClockRegl |

Reqisters for high and low priority process i
queues: ClockRegX, TNextX. TNextRO TNextR1

« Timer Queue Pointers: TPtrLocX (* in Memory) | TPtrLocO * TPtrLocl *

2.2 Instruction Set

Format

Instruction Format:

8 bit Op-Codes — very compact !

Reason: due to statistics ... 70% of all
program code consist of load and store
instructions with almost small
operands.

4 bit Function Code = 16 instructions
4 bit Data Part ... values #0...#F

Function Code #F (operate) uses Data
as function as well - +15 instructions

2 Functions Codes (Pfix, NFix) are
used to extend Data Part w/ Oreg ...

— up to 32bit (for function #0...#E) as
direct operand

— up to 8...12bit (for function #F) as
OpCode for further instructions

Function Data

7 4 3 0
#F OpCode
#2 Data
#6 Data

operate

pfix

nfix

2.2 Instruction Set

Overview

The T414 has 100 instructions which can be grouped as follows [LM92]:
16 addressing and memory access instructions

e 6 branching and program control

o 41 arithmetic and logical

« 12 process scheduling and control

e 16 inter-process communication

* 9 miscellaneous

Only 4 Addressing Modi:

 immediate constant is part of instruction (ldc := load constant)

e register-direct ... register-to-register (e.g. within evaluation stack, ...)

e register-indirect ... address in register (either Wptr or Areg)

* register-relative ... address and displacement in registers (Wptr and Areg)

 There are two ways of addressing memory, namely to specify the address as a fixed
offset from the address in the workspace pointer (Wptr) or the A register.

The T805 has 167 instructions, additionally are:

50 FPU instructions

« Special instructions ... like 2D move for graphics applications
o Test & Analyze Support (j#0)

2.1 Hardware Detalls

CPU: Woptr, Iptr, Oreg

Registers are related to running Process

(process which is consuming CPU time) Locals:
+3 i ndex3
Instruction Pointer: Iptr +2 | address2 Program:
. . . +1 vari abl el '
* points to next instruction to be executed 40 [#7FFFEFFEE |

Workspace Pointer: Wptr
e points to Workspace of running process
o Whptr+0 ... Wptr+x for Program-Use
(very fast access to lower 16 words,
4kB SRAM w/ Register Quality!)
Whptr-1 ...Wprt-5 for Process-Use

1 1
w N

N

1
()]

#80000000

Wptr —
Iptr

A 4

Oreg

 Operand Register: Oreg

« used to extend the size of Operands
(4bit ...8...12...16...20...24...28...32bit)

* necessary to build more instruction
codes by use of Prefixes

2.1 Hardware Detalls

CPU: Address Space

Address Space: Machine Map Byte address Word Occam Map
. . offset
* highest: MostPos (most positive Integer) Reset Inst. #7FFFFFFE
: #TFFFFFF8
* lowest: MostNeg (most negative Integer) 4TEEFEESC

« totally little Endian Bit, Byte and Word Order
* single Byte Write is possible (Byte-Selector)
* Read always 32bit Word-wise (aligned)

#00000000

#80001000 Start of ext.Memory #0400

#80000070 MemStart (int. RAM) #1C

« internal RAM at lowest Addresses Reserved— l8000005C
for
extended functions |#80000048
Reserved Locations: ERegintSaveLoc_|#80000044
. STATUSIntSavelLoc [#80000040
e Channel Control Words for Link 0-3 CRegintSaveLoc_|#8000003C
BRegIntSavelLoc |[#80000038
« Channel Control Word for Event channel ARegintSaveLoc |#80000034
i i H Ari IptrintSaveLoc |#80000030
. P_omters to begin of high and low priority e 00002C
Timer queues: TPtrLocX TPtrLocl #80000028
- P TPtrLocO #80000024
* Interrupt Save Location for (Iqw Pr|<_)r|t_y) = ot 480000020 208l Evert
processor status, in case of a high priority Link 3 Input __|#8000001C #07| Link 3 Input
e : P Link 2 Input #80000018 #06| Link 2 Input
process is interrupting a low priority process. Tink Linput 80000014 05| Link L Input
* Reserved for extended Functions means: Link 0 Input__|#80000010 #041 Link 0 Input
. . . Link 3 Output #8000000C #03| Link 3 Output
this area will be temporarily used by the Link 2 Output_|#80000008 #02| Link 2 Output
processor during execution of 2D block move Link 1 Output _|#80000004 #01[Link 1 Output

Link 0 Output #80000000 (Base of memory) #00| Link 0 Output

instructions, i.e. do not modify!

2.1 Hardware Detalls

Links: Registers

Transputers can be connected by their Links. Transputer_product 1 ransputer_product 2
LinkOut ———————7Linkin
Each serial Link has an Input & an Output channel: Linkin |g——{LinkOut

e Channel: channel control word - reserved
location in memory (contains either Wdesc of

Memory:
related Process or ,not.process") FTFrrFRRF
* CountReg : no. of bytes to transfer / receive L :
 PtrReg: Source Address of data for output / : :
Destination Address for data to input
 DBUuffReg: 32bit Data (4 Byte) buffer TPtrLocl
« Shift-Register (8bit): bytewise load, bitwise Tpé\:ean;CO

shift out / in of data - :
Link 3 Out m Link 3 In
Channel * Link 1 In

- — Channel *

Link O In

CountReg : CountReg
#02 Li nk 2 Qut

PtrReg #01 | Link 1 Qut PtrReg
DBuffReg #00 | Link 0 Qut DBuffReg
= 2nd 1T
Shift-Register ¢ - - ---- > - - - - - » Shift-Register

Transputer

2.1 Hardware Detalls

Links: Protocol

Each communication channel requires that all 4 input and output lines of the
respective Links are connected.

Simple Link Protocol:

e 2 Start-Bits

« 8 Data-Bits

« 1 Stop-Bit

Each transfered Byte has to be confirmed by:
« 2 Acknowledge-Bits

Input Link 1 0

Output Link PR (N [T VO AL\
| 1 1 1 1 1 1 i

time

2.3 Process Model

State Transitions (simplyfied)

At any time, a concurrent process may be
active

* being executed (running)

« on a list awaiting execution

inactive

e ready to input

* ready to output

« waiting until a specified time

(active) (active)
running sleeping

2.3 Process Model

Wptr & Workspace Descriptor

« Wptr. Workspace-Adress

 Wptr = lowest 2 bits always Zero !
 Wdesc: Workspace Descriptor

« Wdesc = Wptr + LSB for Process for Priority

used as ,ldendity-Card“ of process ... in case
process is waiting for an event (e.g. in Channel
Control Word), tells the CPU which priority the
process in the channel contol word has to run

Note: Wptr of actual running process is stored in
CPU and

Wptr

+3
+2
+1
—> +0

process priority is known to CPU-Status

31 ... 28 27 ... 24 7

#A #5 #A #5 #A #5 #A

[N A |
g b~ WDN

Locals:

| PO NT

NEXTP

#80000000

2.3 Process Model

Wptr & Process Status

 Process Status (Wdesc) is needed for pre-
emptive Multitasking: Locals:

Woptr (+Prio) is Id-card of process! — Channel *
+3 i ndex3
+2 addr ess2
In case a Process becomes descheduled N :é vari abl el

the Locations below Wptr are used as follows: 1

« -1 IPOINT: points to next instruction of a
descheduled Process, i.e. form here the
process can be continued

« -2 NEXTP: points to Wptr of next Process, if in i #80000000
lo/hi Prio Process Queue (active-waiting) Wptr ||

« -3 BUFADDR: used during channel
communication, points to data to be transferred

-4 TLINK: points to Wptr of next Process, if in
lo/hi Prio Timer Queue (-or- ... TALT Flag)

« -5 TIME: time value the process is waiting for,
if in lo/hi Prio Timer Queue

[T |
A WDN

1
()]

2.3 Process Model

Process Queues

2 Process Queues : one for high

. . . . Registers Memory
priority and one for low priority —
processes BackPU 3 =
e Queues are organized as linked fromand back penters — =
. . .. R
List's, Fptr is pointing to top of
gueue and Bptr to bottom of ; =
gueue, i.e.: ;k:;’ =
« Fptr contains Wdesc of next i e b
front and back pointers
process to become scheduled .

I

 Bptr contains Wdesc of last

. Workspace
process which has been o‘;’,ﬁ?ﬁé i e KSR =
descheduled ol 1=
instruction =
« The linked list is organized via A R e
. Evaluation
Wptr-2 of each process in queue k] |2
C

2.3 Process Model

Timer Queues

« 2 Timer Queues : one for high priority and one
for low priority processes, organized as linked
List's, TPtrLoc is containing the Wdesc of the
process, which is next to be waked up

High priority Timer:

e one increment (tick) every 1 uSec
Low priority Timer:

* one increment (tick) every 64 uSec

« If alow prio process exceeds his general time
slot of 1 Millisecond it will be descheduled
during next timeslot

Timer Registers Definitions:

 ClkReg +1 < Future < ClkReg + MostPos
» ClkReg > Past > CIkReg + MostNeg

« can be RESET or read ... but not written

TPtrLocl —» +0

MostNeg

[NI Ot

+
o

oAbk

Workspace
Process X

300

Workspace
Process Y

1000

| #80000000 |+—

2.3 Process Model

Descheduling Points

* in general all instructions run as ,Atomic Operation®, i.e. only at dedicated
instructions (j, lend, in, out, outb, outw, altwt, taltw, tin), so called
Descheduling Points, the scheduler can put a low prio process to sleep,
e.g. if the process has exceeded his 1ms time slot.

e The (Occam-) Compiler has to avoid endless atomic operations, i.e. if there
are no loops at all ... then from time to time there may be a NOP-like
descheduling operation (jO) included

* Note: in case of Descheduling the registers and process Status will not be
saved ... only Iptr! Above Descheduling instructions ensure, that the
evaluation stack is empty, all process owned variables and results have be
saved in workspace already. Therefore process switching time is incredible
fast.

* A high prio process (e.g. ext. Event) allways can interrupt any running low
prio process. A reserved SRAM area will be used to store all registers & the
processor status. Interrupt response time is 19-58 clocks (due to the current
running instructions has to be completed first!), i.e. 0.95-2.9us @20MHz.

2.3 Process Model

Events & Descheduling Points

For the Transputer everything of the following is an Event:

 Timer Counter has reached a preset value

e Input communication request

e Output communication request

« external Event requires Interrupt

Channels are telling the system which process is related to which event.

- So events can be handled completely by Hardware & Microcode, i.e. they
are full transparent to the user.

2.4 System Services -in Arbeit-

Reset, Analyze, Boot

* No dedicated in-circuit Emulator required / avaliable at that time
« No MENTOR FastScan avail (intro 199x)
 The Analyze -Pin was used for Software Debugging, therefore exist ...

2 Kinds of Reset:
1.) Reset w/o Analyze = normal PwrUp ... internal Status is ,virgin®

2.) Reset w/ Analyze = Debug-Mode ... internal Status is preserved,
communication is still completing, Processor halted awaiting Boot over Link

2.4 System Services -in Arbeit-

Boot over Link

 Microcoded ,Boot over Link “ Procedure:
1st Byte = #0 - poke Operation: read next 8 Byte as address + data to write
1st Byte = #1 - peek Operation: read next 4 Byte as address, output data

1st Byte > #2 - boot Operation: 1st Byte = number bytes (<256) to receive
...write these Bytes @MemStart into internal memory and

...Start this as program (e.g. Bootloader for larger Programs)
e Il.e. consequently this can be used:
... either for Booting a whole big big system over a Worm
...or Software debug after Analyze+Reset to read/modify processor status

« Example: ispy protocol of a 4 Transputer System incl. Memory & Linkspeed

Using 150 ispy 3.23 | ntest 3.22

2K, 1 4094K, 3.

Part rate Link# [LinkO Linkl Link2 Link3] RAMcycle

0 T800d-25 288k 0 | HOST - - 1:0] 4K, 1 1024K, 3;

1 T425c-20 1.6M O | 0:3 2:0 3:0 ...] 4K 1 4092K, 3.

2 T400c-20 1.7M O | 1:1] 2K, 1 1022K, 3.
]

3 T400c-20 1.8M O [1: 2

3. Occam

.Barron, Hoare and May went 1980 to a hotel for a week-long brainstorming
session and returned with the specification for the new language.”

,Occam was just as revolutionary as any other aspect of the transputer. It
was intended not just as a programming language but also as a means of
describing the structure of a computing system.”

[LR85] M.McLean and T.Rowland ,The Challenge of the Transputer*,
Chapter 9 from ,THE INMOS SAGA - A Triumph of National Enterprise?”, © 1985

3. Occam as Assembly Language

Input & Output Example

A very simple example of an occam program is the buffer process..

VH LE TRUE
VAR ch:
SEQ .
in —P» ch —P-out
in ? ch
out ! ch

 Note: No Brackets! Indentation is used to indicate the program structure!

« The buffer consists of an endless loop, first setting the variable ch to a
value from the channel i n, and then outputting the value of ch to the
channel out . The variable ch is declared by VAR ch.

 The direct correspondence between the program text and the pictorial
representation is a useful starting point in the design of an efficiently
iImplementable concurrent algorithm.

3. Occam as Assembly Language

Internal Channel Comm 1/4

A Channel is a word in memory
= Channel Control Word

The channel can be marked as
unused (empty) by a descriptor
»N0.process” = #80000000

- achannel is a semaphore

1. Beqgin of a Communication

For input or output operation
the CPU reqisters are:

Areg: message length in Byte
Breg: Channel Address
Creg: Pointer to Databuffer

Example: Lets consider the 1st
Process is ready for Output

Channel *

NO. PROCESS

Areg

Breg

Creg

1st Proc Wptr

+3
+2
+1
—> +0

A 4

Message

i ndex3

addr ess?2

vari abl el

#80000000

3. Occam as Assembly Language

Internal Channel Comm 2/4

If the Channel is empty, i.e.
»N0.process” = #80000000,
then the 1st (Output) Process
.knows* he has to wait for the
2nd (Input) Process to become
ready for communication

2. Initialization of Communication

1st (Output) Process CPU
registers will be written to:

Areg . message length in Byte
... will got lost ® (i.e. 2nd
(Input) Process will determine
no. of Bytes later ... if not
matching ... then its
programmers fault)

Breg: Channel Address, - 1st

(Output) Process will write his
Wdesc into the Channel

Creg: Pointer to Databuffer >
will be written to own Wptr-3

The 1st (Output) Process will
now be descheduled ... w/o
gueing into waiting list!

Channel *

Areg

Breg

Creg

1st Proc Woptr

+3
+2
+1
—> +0

Message

i ndex3

addr ess?2

vari abl el

BUFADDR

#80000000

» WDESC1ST

#7FFFFFFF

3. Occam as Assembly Language

Internal Channel Comm 3/4

o If the 2nd (Input) Process Channel *
becomes ready for .
communication ... he will read #7FFFFFFF
the channel and detect his |
partner process is already
waiting for communication

3. Execution of Communication »| WDESCIST

 2nd (Input) Process is reading
Wdesc = Wptr of 1st (Output)
Process to find its data pointer Breg
@ Wptr-3 to read message... Creg

 CPU regqisters of 2nd process:

 Areg: message length in Byte +§ nd gdexs
. . +
... will determine no. of Bytes o Vaarifaebslsei

now © for data transfer . 40
« Breg: Channel Address, -1

« Creg: Pointer to own
Databuffer = here data will be
written to now! . |

Areg

A 4

Message

2nd Proc Wptr -3

#80000000

3. Occam as Assembly Language

Internal Channel Comm 4/4

The 2nd (Input) Process will
transfer data from 1st (Output)
workspace into his workspace

4. Finish of Communication

CPU registers of 2nd process:

Areg . message length in Byte
... will determine no. of Bytes
now © for data transfer

Breg: Channel Address,

Creg: Pointer to own
Databuffer - here data will be
written to !

After all data have been copied:

The Wdesc of 1st (Output)
process will be added to the list
of waiting processes (- Bptr)

channel will be set back to
empty = no.process =
#80000000

The 2nd (Input) process has
finished communication and
can continue w/ next instruction

Channel *

#7FFFFFFF

Areg

Breg

Creg

2nd Proc Wptr

+3
+2
+1
— +0

A 4

Message

i ndex3

addr ess?2

vari abl el

#80000000

NO. PROCESS

3. Occam as Assembly Language

Internal Channel Comm ...

Example was about Output Process arrives first.
What will happen if Input Process arrives first ?

?77?

« Answer: the same procedure!

* in this case the 2nd (Output) Process has to do the copy job ...

l.e. always the ,last” process of both communication partners determines
the number of bytes to be transfered.

3. Occam as Assembly Language

external Channel Comm

(Link-)Channel is in reserved Memory area ... process which arrives 1st has to wait
Protocol: each received Byte will be acknowledged, but only if receiving process is ready!
Sender can always send one (1st) Byte ... but w/o acknowledge after ... he has to wait!

1st
Transputer

Link 1 Out

Channel *

—

CountReg

PtrReg

DBuffReg

11

ACK

A

Shift-Register |

T

#02
#
#00

Memory:

#7FFFFFFF

TPtrLocl

TPtrLocO

Event

Link 3 In

Link 2 In

Link 1 In

Link O In

Li nk 3 Cut

Li nk 2 Cut

Link 1 Qut

Link 0 Cut

Communication

A

Memory:

#7FFFFFFF

TPtrLocl

TPtrLocO

Event

Link 3 In

Link 2 In

Link 1 In

Link O In

Li nk 3 Cut

Li nk 2 Cut

Link 1 Qut

Li nk 0 Cut

» Handshake

Link 1 In Shift-Register f¢-------—-—- - - - - - - oo -
(can be send overlapped to data on channel)

2nd
Transputer

Link 2 In

Channel *

CountReg
PtrReg
DBuffReg

TT
Shift-Register

ACK

A\ 4

» Link 2 Out Shift-Register

3. Occam as Assembly Language

further Constructs ...

Further available Occam Constructs in Microcode are:
e PAR
e ALT

- These Constructs are more complicated, due to additional necessary
counters for all inclued processes. Furthermore constructs with Timer
contribution have to be considered different.

- Therefore ... pls see literature for detailed descriptions.

End of Presentation.

4. Outlook

-
-2
3
3
S
g
8
=
-8
2
3
3
2

»+An interesting observation was made that the programmer s with a
background in hardware design fared better with the design of these
highly parallel systems than did those with a traditional computer
science background.* the Legacy of the Transputer ~ © 1999

4. Qutlook

Discussion ... missing Features

The Transputer is excellent for embedded (trusted) applications
General purpose use is handicaped by ...

« No MMU (memory protection between different applications on same chip
Impossible - but chip to chip 100% true)

 No more (finer grain) than two Priority Levels

» Virtual Channels (only in Software) to allow processor-independent process
placement & move (as well to speed up serial communication)

Some of this lacks have been overcome by the T9000 + C104 design.

« Unfortunately the T9000 ooO-design-issues could not be solved in time

 The complicated T9000 chip never became productive ® with ist 10MHz

* Nevertheless a couple of MIMD machines (64 x T9000) have been built
(CERN, University of Kent) and are still running ... ©

4. Qutlook

open topics...

Open Topics ... which could not be covered in this presentation:
« Transputer Chip Family, Peripherals, C004: 32 Channel Link Switch
* Transputer modular Industry Standards: Boards & TRAMs
« Transputer Development Systems
« further Programing Languages
e Operating Systems
« Transputer Main Applications+Markets (AddOn Boards, embedded, MIMD)
« 2nd Generation Transputers + Routers:
— T9000, C104, the IEEE-1355 Spacewire Standard, IEEE-1394
— ST20450 (1995), ST20 embedded CPU (200+MHz) up today
 3rd Generation Occam / CSP Languages
— Occam-Pi, Handel-C ... HDLs for FPGA synthesis
— KrOC - Kent retargetable Occam Compiler
 Transputer Emulator
 Today's Transputers: www.Xmos.com

Literature, Sources, Links

General+History

Paper: [C099] R.Cook , The Legacy of the Transputer” — http://www.wotug.org/papers/lvimeyCook \W22.pdf

Book: [LR85] M.McLean and T.Rowland , The Challenge of the Transputer®, Chapter 9 from ,THE INMOS SAGA - A Triumph of National Enterprise?*, free download:
http://www.transputer.net/fbooks/saga/saga.pdf

Interview: lann Barron, ,Inmos and the Transputer®, Part1 & 2: hitp://www.cs.man.ac.uk/CCS/res/res32.htmi#c & http://www.cs.man.ac.uk/CCS/res/res33.htm#c
[GHS88] H.Grubmilller, H.Heller, K.Schulten, ,Superrechner — eine Cray fiir Jedermann*, mc.88.11.048-064, http://www.mpibpc.mpg.de/276339/paper_mc_1988.pdf
[Me06] M.Helzle, ,Transputer - das verkannte Genie*, COMPUTERPRAXIS 21.Jul.2006,
http://www.embedd.it/downloads/Transputer%20-%20das%20verkannte %20Genie %20Juli%202006.pdf

[Wa03] Paul Walker ,the Origins of SpaceWire®, 2003, http://www.4links.co.uk/bibliography/Origins-of-SpaceWire-4Links-ESA-SpW-Conference-2003.pdf

Documentation

Wikipedia: http://en.wikipedia.org/wiki/Transputer

Documentation: www.tranputer.net (Website of Michael Briistle) = INMOS Datasheets & Technical Notes

About Parallel: http://www.classiccmp.org/transputer/ (Ram Meenakshisundaram's Transputer Home Page) - Boards, Hardware, Software
Intro: [St85] C.W.Strevens (INMOS), ,the transputer” IEEE 1995

Intro: [Mo97] T.Modi, ,Parallel Processing using Transputers®, http://teknirvana.com/documents/Transputers.pdf
Review: [LM92] J.deLeeuw, A.deMes, Transputers - design and use as a building block” http://www.science.uva.nl/~mes/psdocs/transputers.ps.az%E2%80%8E

Book: [RS91] H.Reinecke, J.Schreiner, , Transputer-Leitfaden — Eine Einfiihrung und umfassende Beschreibung®, C.Hanser Mlinchen 1991, ISBN-3-446-16063-9
Book: [Eb93] Heinz Ebert, ,Transputer und Occam, Das Handbuch fiir Systementwickler” Heise 1993, ISBN-3-88229-0005

Book: John Roberts, , Transputer Assembly Programming” 1992 transbook, ISBN-10 0-442-00872-4, free download: http://www.transputer.net/iset/pdf/transbook.pdf
Homepage of Transputer-Architekt David May: http://www.cs.bris.ac.uk/~dave/index.html

Book: Networks, Routers and Transputers, http://wotug.ukc.ac.uk/docs/nrat/book.psz.tar free download (Postscript-Format)

The Transterpreter Project: http://www.transterpreter.org/Transputer

Transputer-Emulator: https:/sites.google.com/site/transputeremulator/

CSP+0Occam

Book: [Ho85] C.A.R.Hoare ,Communicating Sequential Processes", 21jun2004, ISBN-01-31-53289-8, free download: http://www.usingcsp.com

Booklet: [Hy95] D.C.Hyde, ,Introduction to the Programming Language Occam”, free download: http://www.eq.bucknell.edu/~cs366/occam.pdf

Book: [PM86] D.Pountain, D.May, ,A Tutorial Introduction to Occam Programming®, MacGraw-Hill NewYork 1986, ISBN-0-632-01847-X

Book: [PR87] D.Pointain, R.Rudolph, ,Occam - das Handbuch — Anleitung zum Programmieren paralleler Rechnersysteme”, Heise 1987, ISBN-3-88229-001-3
Software: KrOC - the Kent retatgetable Occam Compiler, http://www.cs.kent.ac.uk/projects/ofa/kroc/

WoTUG-Archive: http://www.wotug.org/parallel/ - World Transputer User Group, Proceedings & Papers

Literature, Sources, Links

some unsorted Papers ... Outlook

. Paper: [RWW91] H.Roebbers, P.Welch, K.Wijbrans, ,A generalized FFT algorithm on transputers®, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2284
. Paper: Towards concurrency - occampi on LEGO Mindstorm http://www.cs.kent.ac.uk/pubs/2004/2004/content.pdf

. Paper: Roger Heeley, “The Application of the T9000 Transputer at CERN* (1995), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.7796

. Interview: [Pa00] lan Page, ,Software to Silicon with HandelC*, https://www.doc.ic.ac.uk/~wl/teachlocal/arch2/ianpint.pdf

. Announcement: [Gu09] Guildford (University of Surrey), “Formal Verification of an Occam-to-FPGA Compiler and its Generated Logic Circuits”,
http://www.surrey.ac.uk/computing/news/events/2009/formal_verification of an occamtofpga compiler and its_generated logic circuits.htm

. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software http://www.gotw.ca/publications/concurrency-ddj.htm

. The Landscape of Parallel Computing Research: A View From Berkeley http://view.eecs.berkeley.edu/wiki/Main_Page

INMOS-Patents _—> www.patentgenius.com

. US-Pat-4730308 Interface between a computer bus and a serial packet link - 08Mar1988
. US-Pat-4758948 Microcomputer - INMOS 19Jul1988

. US-Pat-4783734 Computer with variable length process communication - INMOS 08Nov1988
. US-Pat-4811277 Communication interface - INMOS 07Mar1989

. US-Pat-4794526 Microcomputer with priority scheduling - INMOS 27Dec1988

. US-Pat-4811277 Communication interface - INMOS 07Mar1989

. US-Pat-4819151 Microcomputer - INMOS 04Apr1989

. US-Pat-4885740 Digital signal switch - INMOS 05Dec1989

. US-Pat-4967326 Microcomputer building block_300ct1990

. US-Pat-4989133 System for executing time dependent processes - INMOS 29Jan1991

. US-Pat-5031092 Microcomputer with RAM in separate isolation well - INMOS 09Jul1991

Origin of Pictures
. Original Chip Picture of T414 — from http://www.chilton-computing.org.uk
. Original Chip Picture of T805 — from www.tranputer.net = Pictures (thanks to Michael Briistle)

Misc

. Ockham's Razor: http://www.seanparnell.com/Hyperion%20Cantos/Web%20Pages/Occam%27s%20Razor.htm
. INMOS History & pictures: http://www.inmos.com/

. home of real men's hardware: http://www.geekdot.com/

. Transputers can be fun: http://www.michaelp.org/transputer

. Ispy & Mtest: http://www.wizzy.com/wizzy/transputer.html

Appendix

Exhibits

Microprocessors: 1981 to 1990

—
w0
=]
—

Tech-Node / Clock g

332

ar:

O

8086+8087, 286-

—
"

oDX+387

Motorola 68020+68881

et

kstation:

V)

(1983)

wflla M COMPUTER http://www.computerhistory.org/microprocessors/
Exhibits i 0 0 Y-0rd .

Microprocessors: 1990 to 1996 g 2 2
Dominant Processors 1.0-0.8um / 30-60Mhz| 0.8-0.5um / ...133Mhz

Nexgen

= Intel 33651
sisto

i

DEC Alpha 21064
10580 tranzistors

2.2 Instruction Set

Opr Register during pfix # (1CIKk)

7 4 3 0

pfix #1 #2 #1
31 ... 28 27 .. 24 7 ... 43 ﬁ 0

load Oreg #0 #0 #0 #0 #0 #0 #0 #1

———

shift Oreg #0 #0 #0 #0 #0 #0 #1 #0

pfix #A #2 #A
31 ... 28 27 .. 24 7 ... 43 ﬁ 0

load Oreg #0 #0 #0 #0 #0 #0 #1 #A

C——

shift Oreg #0 #0 #0 #0 #0 #1 #A #0

Idc #5 #4 #5
31 ... 28 27 .. 24 7 ... 43 ﬁ 0

load Oreg #0 #0 #0 #0 #0 #1 #A #5

load Areg #0 #0 #0 #0 #0 #1 #A #5

2.2 Instruction Set

Opr Register during nfix # (1CIK)

nfix #A

load Oreg

negate Oreg

shift Oreg

Idc #D

load Oreg

load Areg

7 4 3 ... O
#2 #A
31 ... 28 27 ... 24 7 .. 4 3 ﬁ 0
#0 #0 #0 #0 #0 #0 #0 #A
#HE #HF #HF H#HE H#HF #HE #HE -
P E—
#4 #D
31 ... 28 27 ... 24 7 ... 4 3 ﬁ 0
#F H#HF H#HF #F H#HF #F #5 #D

2.2 Instruction Set

st OpCode Table

one Byte Operation Codes: 31 76 5 4 3 2 10 7 6 5 4 3 2 1 0
n* | pfix | Data | Opr istNib. | Data |
2 x x x

7 6 5 4 3 2 1 0
or one Byte Instruction | operate | Opr2nd Nib. |

F X
2nd Nibble
0 1 2 3 4 5 6 7 8 9 A B C D E F Niﬁ:le Operation Cycles | FctCode N?ll)qk;jle Operation Cycles | OpCode
0 j address relative to Iptr 0 jump 3 0 0 reverse 1 00
1 Idip offset relative to Wptr 1 load local pointer 1 1 1 load byte 5 01
2 pfix operand 2 prefix 1 2 2 byte subscript 1 02
3 Idnl offset relative to Areg 3 load non-local 2 3 3 end process 13 03
4 Idc operand 4 load constant 1 4 4 difference 1 04
5 Idnip offset relative to Areg 5 load non-local pointer 1 5 5 addition 1 05
6 nfix operand 6 negative prefix 1 6 6 general call 4 06
é 7 Idl offset relative to Wptr 7 load local 2 7 7 input message 2w+19 07
g 8 adc operand 8 add constant 1 8 8 product b+4 08
9 call address relative to Iptr 9 call 7 9 9 greater than 2 09
A cj address relative to Iptr A coggr.] élj'rj?r)n(;)n(()t[zaf:r%n) i A A word subscript 2 0A
B ajw operand B adjust workspace 1 B B output message Pw+19 0B
C eqc operand C equals constant 2 C C subtraction 1 oc
D stl offset relative to Wptr D store local 1 D D start process 12 oD
E stnl offset relative to Areg E store non-local 2 = E output byte 23 OE
F opr | rev | Ib |bsub iandp |diff ladd 4call In p{od 41 wsl.ub 041 su+ start| p| l?ytu; | \/\?:rtd F operate F F output word 23 OF

2.2 Instruction Set

5th OpCode Table ... example

two Byte Operation Codes: 16 7 6 5 4 3 2 10 7 6 5 4 3 2 10
| pfix | 4 | operate | Opr2nd Nib. |
2 4 F x
2nd Nibble
1st .
0 1 2 3 4 5 6 7 8 9 A B C D E F Nibble Operation clk
é F opr | shr | shl |mint |alt ltwt afend gnd epbt erfoc enps mope o csn gllcentl | talt |Idiff F operate
—
2nd .
Nibble Operation Cycles | OpCode
0 shift right 1 40
1 shift left 1 41
2 minimum integer 1 42
3 alt start 2 43
ODCOde Tab|eS 4 [|alt wait (channel not ready) | 17* 44
5 alt end 4 45
* one table for one Byte OpCodes o and T
7 enalbe timer 8 47
« 11 tables for 2 Byte OpCodes (#1x...#BX) 5 | e
enable skip
e one table for 3 Byte OpCodes (#17x) . move Message s 22
C check single 3 4C
D check counter from 1 3 4D
E timer alt start 4 4E
F long diff 3 4F

All togeter = 151 direct instructions
+16 indirect instructions (FPU only)

2.1 Hardware Detalls

CPU: Data-Paths

e 4 Phase Clock = 1 Clock Execution

« Data Path controlled by horizontal SIS StrEams
Microcode (~80 bit wide) . Instruction ptr_|
‘ Operand reg
* X-and Y-Bus for operand transfer s

Scheduler

« Z-Bus for result transfer and data Workspace pr] |

exchange with Link Channel DMA's or
reading the actual Timer value

» U-Bus to control (arbiter) the Z-Bus,
l.e. either processor or DMA's can be

Datainreg
master! data out reg
[' Channel dat
« RISC instructions, e.g. almost all ALU 3nnel a'a reg
operations

« CISC instructions, e.g. all Scheduler
Operations, 2D Blok Move, ...

For more HW details ... see Patent List in Appendix.

2.1 Hardware Detalls

FPU

Processor

Whetstones /second

FPU

single length

Intel 80286/80287 8 MHz 300K |
IMS T414-20 20 MHz 663K e L
NS 32332-32081 15 MHz 728K Shit

MC 68020/68881 16/12 MHz SUN 3 755K
VAX 11/780 FPA UNIX 4.3 BSD 1083K
IMS T800-20 20 MHz 4000K
IMS T800-30 30 MHz 6000K

Databus
interface

full IEEE-754 compatible single and double precision (64bit) FPU w/ 50
Instructions

« All Arithmetic operations have been formally verified and proven
« Full parallel FP operation to integer CPU (e.g. address calculations)
* Note: no big hardware multiplier! But Silicon area vs speed optimized

For 64bit: fmul 27 clocks, fdiv 43 clocks = ca. 1.5 MFLOPs @ 20MHz

For more internal details about FPU pls see [72-TCH-047-00]
“The role of occam in the design of the IMS T800”, INMOS technical Notes, Sep88.

2.1 Hardware Detalls

Links: Data-Paths

Each Link has separate input logic and output logic, combined with own DMA.
Therewith Link operation can be fully overlapped w/ CPU operation.
 U-Bus: Data-Bus and Address-Bus Arbitration (Link DMA vs CPU)

 V-Bus, W-Bus: provides Source (input) or Destination (output) Address
from PtrReg via DataAddrReg (CPU) to Address-Bus

 Z-Bus: connects Link DBufReg via ChannelDataReg (CPU) to Data-Bus

atain reg
data out reg

(a) Link Transfer Rate nominal is 20Mbps (1,2MByte/s) for short distance Channel data 16g
direct Transputer to Transputer connection.

In case of more than 30cm distance Fast-TTL buffering is recommended.
(b) For long distance connection (>20m up 1km) matching RS422 is used.
In case of larger distances the use of fiber optics is recommended.

LinkOut LinkIn
Transputer 1 Transputer 2
LinkIn LinkOut
(a)
56Q 10092 transmission line
LinkQOut ———————"—"—1IinkIn -
Links
Transputer 1 Transputer 2 1wl
560 V —wl—z
Linkln LinkOut Address e
registers | Instruction fetch address
< Channel address
o Data address

2.4 System Services

onChip RAM + Mem-IF

o full programmable memory timing Tm period T | T2 | T8 T4 | TS| 6| T
from 3 to 6 T cycles (each 50ns) for Fixed oo
dRAM access times from 50...150ns ~ “"*™ | !

. . Fixed Programmable
« direct RAS / CAS signals notMemSl :
« Refresh control register in CPU R ogenmabe s SRS
Programmable Fixed

notMemS3 = . I
« for small outline TRAM design Programmable Fixed
.- . . notMem§S4 < e I
« only few additional circuits needed:
— MemAD —— ! Data —-
PAL Read
Memory
cli control notMemRd | IR S SR
signals
ko MemAD —1__Address _H_ Data H
0 — Write
_— T800 Early Late
\= orT425 notMemWrB(w} = |
2] R
> Write
3&T——

16 memory
devices

Il

reset, analyse and error

4. Qutlook

Transputer Target Applications

« Scientific and mathematical applications
* High speed multi processor systems

* High performance graphics processing
e Supercomputers

« Workstations and workstation clusters
« Digital signal processing

» Accelerator processors

» Distributed databases

o System simulation
 Telecommunications

* Robotics

e Fault tolerant systems

 Image processing

« Pattern recognition

« Atrtificial intelligence

4. Qutlook

other Programming Languages

e Ada
C
C++
Fortran
Forth

« Java

4. Qutlook

Transputer OS

« CHORUS (UNIX) System V
« Helios (UNIX), distributed OS, pKernel based (,Nucleus®) = see next Page

o Idris (UNIX), POSIX compatible, User-IF running on one CPU only,
distributed Communication Kernels for Message Passing

« Trollius (UNIX), node based Kernel (same on each CPU), Lib. for Message
Passing

 TINIX

« Virtuoso (UNIX), uKernel based (Nano-Kernel: Processes & Channels),
available for different Hardware Platforms: T8/T9, TMS320C30, MIPS,
68030, ... x86

4. Qutlook

OS: Helios

ParHelion GmbH:

e Helios (UNIX), distributed OS, uKernel based (,Nucleus*), Client-Server
Model, Message Passing, all resources are named Objects, e.g. Task
Moving possible (secure autentication),

Nucleus consists of 4 components:
— Kernel (Message Passing, Memory Mgmt),
— System Lib (Sys Calls),
— Loader (Code & Data Mgmt),
— Processor Mngr (Task & I/O Mgmt)
« Memory requirements for uKernel ~ 1IMB RAM, 4MB TRAM recommended.

4. Qutlook

Transputer Networks

[0.8)

[12,16)

Transputer Grid

8.9) o [10,12)}——

0 1 2 3
"4, 5 6 7
8 9 10 11
12-- 13 14 15

Router Network

CrossBar LinkSwitch §88

— 32

IMSC004

Router .

1

Router|.

Router |z

(1988) |

.| Router

33

s| Router

34

:|Router

48

4.0utlook

Standard Boards

IMB-PC Development & Accellerator Boards (ISA):

 BO0O04 (1985) T414-15, 2MB RAM

. B008 (1987): up to 10x TRAM,

VME Development Boards:

« BO011 VME Master (1st Gen.)

« B016 VME Master (2nd Gen.)

« BO014: up to 8x TRAM slave board

