

Erweiterung der Trace-Hardware eines Mikroprozessors für die Fehlerinjektion und -beobachtung

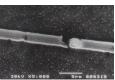
Vorstellung der Diplomarbeit

Marco Gunia marco.gunia@tu-dresden.de

28. November 2013

Inhalt

- Einleitung
- Aufgabenstellung
- Aktueller Stand
- Verbleibende Aufgaben



Einleitung

Fehler in digitalen Schaltungen

Fehler in digitalen Schaltungen unterteilen sich in

- Permanente Faults und
 - → Defekte in der Metallisierung,
 - → Defekte in den Diffusionsgebieten,
 - → Defekte in den Isolatoren.
 - → Defekte beim Chip Bonding,
 - → Defekte bei der el. Kontaktierung,
 - → Entwurfsfehler und
 - → Alterungseffekte.
- Transiente Faults.
 - → Externe Strahlung,
 - → Rauschen und
 - → Elektromagetische Störungen.

Quelle: [Hill04]

Quelle: [Wol07]

Einleitung

Trace

Klassische Debug-Techniken zur Fehlersuche

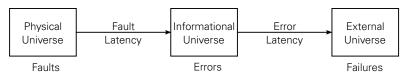
- Simulation,
- In-Circuit Emulator oder
- Software Instrumentation.

Nachteile klassischer Techniken:

- Genauigkeit,
- Intrusivität und
- Postmortem Debugging.
- → Tracing beschreibt den Prozess der Protokollierung der Zustandsänderung eines Systems während der Programmausführung. Das Resultat wird Trace bezeichnet. [Ale09]

Aufgabenstellung

Das Ziel der Arbeit ist die kontrollierte Nachbildung sowohl transienter als auch permanenter Fehler in einem Mikoprozessor ohne Unterbrechung der Programmausführung durch eine Erweiterung vorhandener Trace-Hardware.

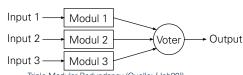

- Literaturstudium zu Fehlermodellen, Fehlerinjektion und Fehlernachweis,
- Literaturstudium zu Trace- und Debug-Hardware in aktuellen Mikroprozessoren,
- Analyse der Anforderungen an eine Erweiterung der Trace-Infrastruktur,
- Analyse der Beobachtbarkeit der injizierten Fehler mittels Trace,
- Entwurf und prototypische Implementierung der Trace-Erweiterung mit Parametrierung,
- Test der Fehlerinjektion und -beobachtung am konkreten Beispiel und
- Bewertung und Dokumentation der erzielten Ergebnisse.

Grundlagen

Fehler in digitalen Schaltungen

Es wird unterschieden zwischen Faults, Errors und Failures.

Unterscheidung zwischen Faults, Errors and Failures (Quelle: [Joh89])



Grundlagen

Fehler in digitalen Schaltungen

Begriffe:

- Fehlermodelle.
- Fehlerinjektion,
 - → Physikalische Fehlerinjektion,
 - → Hardwarefehlerinjektion,
 - → Softwarefehlerinjektion und
 - → Simulationsbasierte Fehlerinjektion.
- Fehlertolerante Systeme und
 - → Fault Avoidance.
 - → Fault Masking und
 - → Fault Tolerance
- Redundanz.
 - → Hardware.
 - → Information und
 - → Zeit.

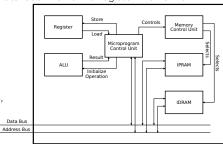
Folgende Arbeiten wurden vor Beginn der Diplomarbeit durchgeführt:

• Entwurf des ZiLOG Z80 Prozessors in Verilog mithilfe von Standardzellen.

Folgende Aufgaben wurden im Rahmen der Diplomarbeit bearbeitet:

- Präsentation von Trace-Hardware in aktuellen Mikroprozessoren,
- Synthese des Z80 auf einem Xilinx Virtex 5,
- Einarbeitung in das zur Verfügung gestellte Trace-Framework und dessen Integration in den Prozessor,
- Vorstellung von Fehlermodellen, Fehlerinjektion und Fehlernachweis,
- Untersuchung von Alternativen für die Fehlerinjektion und
- Entwicklung einer Methode zur Fehlerinjektion in den Z80.

ZiLOG Z80

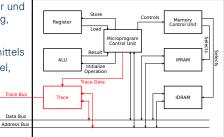

Der ZiLOG Z80 beschreibt einen 8-Bit CISC-Mikroprozessor, der abwärtskompatibel zum 8080 von Intel konzipiert wurde. Ausgewählte Eigenschaften:

- General Purpose Register,
 - Sieben Register und ein Flagregister sowie deren Schattenregister.

Für 16-Bit Operationen Konkatenation von 8-Bit Registern zu 16-Bit

Registern.

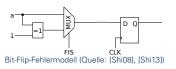
- Weitere Register und
 - Befehlszähler,
 - Stackpointer und
 - Indexregister.
- Interrupts.
 - Maskierbare und nichtmaskierbare Interrupts,
 - Laden des nachfolgenden Befehls aus Speicher oder über externen Datenbus.



Integration der Trace-Hardware in den Z80

Das Trace-Modul wurde von Herrn Stefan Alex im Rahmen seiner Diplomarbeit für SHAP konzipiert. Es ist durch folgende Eigenschaften gekennzeichnet:

- Off-Chip-Trace unter Nutzung der Gigabit-Ethernet-Schnittstelle,
- Protokollierung von Instruktionen, Daten, Nachrichten und Statistiken,
- Auswahl zwischen zyklusakkurater und nicht-zyklusakkurater Aufzeichnung,
- Cross-Trigger-Funktionalität,
- Kompaktierung der Trace-Daten mittels
 - Program-Flow-Change-Model,
 - XOR-, Trim- oder Differenzkompression.
- Bereitstellung der Host-Software zur Dekodierung.



Fehlermodelle und Fehlerinjektion

Im Rahmen der Arbeit werden

- Fehlermodelle auf Schalter-, Gatter- und Registertransferebene vorgestellt, wobei sich
- die Nachbildung auf Stuck-at-0, Stuck-at-1 und Bit-Flips auf Registertransferebene beschränkt.

Zur Fehleriniektion stehen folgende Verfahren zur Verfügung:

- Physikalische Fehlerinjektion,
- Softwarefehlerinjektion,
- Simulationsbasierte Fehlerinjektion und
- Hardwarefehlerinjektion.
 - → Rekonfigurationsbasierte Verfahren und
 - → Instrumentierungsbasierte Verfahren.

Maskenregister zur individuellen Auswahl des entsprechenden Faults (Quelle: [Civ+01b])

Hardwarefehlerinjektion

Instrumentierungsbasierte Verfahren:

• Hinzufügen von Schaltungsteilen zum Entwurf für die Fehlerinjektion.

Rekonfigurationsbasierte Verfahren:

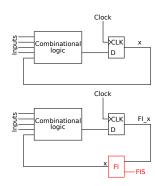
- Klassische Rekonfiguration erzwingt die Veränderung des Quellcodes und somit eine eigene Synthese, Place & Route und Bitfile-Generierung für jeden Fault.
- Partielle Rekonfiguration umfasst die teilweise Veränderung des Bitstreams zur Laufzeit.
 - → Modifikation von LUTs oder
 - → Initialisierung von Flipflops.

Vergleich instrumentierungsbasierter und rekonfigurationsbasierter Verfahren:

- Durchführung mehrerer Experimente in Echtzeit mittels instrumentierungsbasierter Verfahren möglich, aber
- Keine zusätzliche Hardware für rekonfigurationsbasierte Verfahren notwendig.

Fehlerinjektion in den Z80

Bedingungen an die Fehlerinjektion:


- Keine Veränderung des Zeitverhaltens und
- Synthesefähigkeit.

Verilog-Einschränkungen:

- Zuweisung an ein Signal stets nur in einem Prozess und
- Default-Anweisung für Signale am Anfang des Prozesses nicht spezifikationskonform.

Lösung:

- Neue Signale an Flipflop-Ausgängen,
- Rückführung auf ursprüngliche Signale über Fehlerinjektionslogik und
- Realisierung von "dauerhaften"Bit-Flips mittels Signalzuweisung an Flipflop in jedem Takt.

Nachbildung stuck-at-1 (sa1)

FI_X xFI_S=0

Nachbildung stuck-at-1 (sa1)

FI_X xFI_S=1 x


Nachbildung Bit-Flip
FI_x =1 x
FIS=1 x you 17

Fehlerinjektion in den Z80

Den Ausgangspunkt bildet eine synthetisierbare Verilog-Beschreibung. Zur Integration der Fehlerinjektion wird der Quellcode in folgenden Schritten modifiziert:

- Preprocessor,
 - → Verändert die Hardwarebeschreibung entsprechend den im Quellcode vorhandenen Präprozessoranweisungen.
- Prettyprint,
 - → Gruppiert Anweisungen und
 - → Formatiert den Quelltext.
- Mainprocessor und
 - → Erfasst die für die Fehlerinjektion relevanten Signale und deren Eigenschaften (z.B. Signaltyp und -breite) und
 - → Ergänzt die Hardwarebeschreibung um Kennzeichner zur Integration der Logik zur Fehlerinjektion.
- Postprocessor.
 - → Interpretiert die vom Mainprocessor ergänzten Kennzeichner,
 - → Erweitert die Beschreibung um Signale und Logik zur Fehlerinjektion.

Verbleibende Aufgaben

Folgende Aufgaben sind zu bearbeiten:

- Nachweis der aufgetretenen Fehler mittels Trace und
- Implementierung von Fehlertoleranzmaßnahmen und Evaluation.

Vielen Dank für die Aufmerksamkeit!

Quellen

- [Ale09] Alex, S.: Entwurf und Implementierung einer parametrierbaren Trace-Hardware am Beispiel der SHAP-Mikroarchitektur Diplomarbeit, TU Dresden: Institut für Technische Informatik, 2009
- [Civ+01b] Civera, P. u.a.: FPGA-based Fault Injection for Microprocessor Systems Proceeding of the 10th Asian Test Symposium, 2001
 - [Hil04] Hilleringmann, U.: Silizium-Halbleitertechnologie. Wiesbaden: Teubner Verlag, 4. Auflage, 2004
 - [Joh89] Johnson, B.W.: Design and Analysis of Fault-Tolerant Digital Systems
 Addison-Wesley Publishing Company, 1989
 - [Wol07] Wolter, K.-J.: Vorlesungmsskript Aufbau und Verbindungstechnik 1 TU Dresden: Institut für Aufbau- und Verbindungstechnik der Elektronik, 2007