
S

Evaluation of Fast-LZ Compressors for
Compacting High-Bandwidth but Redundant

Streams from FPGA Data Sources

 Author: Luhao Liu
 Supervisor: Dr. -Ing. Thomas B. Preußer
 Dr. -Ing. Steffen Köhler

09.10.2014

1

Why needs compression?

S  Most files have lots of redundancy. Not all bits have equal value.

S  To save space when storing it.

S  To save time when transmitting it.

Who needs compression?

S  Moore's law: # transistors on a chip doubles every 18-24 months.

S  Parkinson's law: data expands to fill space available.

S  Text, images, sound, video, …

2

Morse code, invented in 1838,
is the earliest instance of data
compression in that the most
common letters in the English
language such as “e” and “t”
are given shorter Morse codes.

[1]

3

General Applications

•  Files: GZIP, BZIP, BOA
•  Archivers: PKZIP
•  File systems: NTFS

•  Images: GIF, JPEG
•  Sound: MP3
•  Video: MPEG, DivX™, HDTV

•  ITU-T T4 Group 3 Fax
•  V.42bis modem

•  Google

[2]

4

Used for text, file may become worthless if even a single bit is lost.

Used for for image, video and sound, where a little bit of loss in
resolution is often undetectable, or at least acceptable.

5

No prior knowledge or statistical
characteristics of the data are required.

6

A Hierarchy of Dictionary Compression Algorithms from
1977 to 2011

[3] 7

S  Hardware implementation of data compression algorithms is receiving increasing attention due to
exponential expansion in network traffic and digital data storage usage.

S  FPGA implementations provide many advantages over conventional hardware implementations:

Benefits of FPGA Implementation

8

Features:
•  Available as Compress only, Expand only, or Compressor/Expander core
•  Supports data block sizes from 2K to 32K bytes with data growth protection
•  Completely self-contained; does not require off-chip memory
•  High performance; capable of data throughputs in excess of 1 Gbps
•  Highly optimized for use in Xilinx FPGA technologies
•  Ideal for improving system performance in data communications and storage applications

Helion LZRW3 Data Compression Core for Xilinx FPGA

[4]

9

LZ77 Algorithm

Sliding Window

Search Buffer Lookahead Buffer

Offset

8

Match Length

3 Token:

Next Symbol

e

S  Match with smallest offset is always encoded if more than one match can be found
in the search buffer.

S  However, if no match can be found, a token with zero offset and zero match length
and the unmatched symbol are written.

Output Stream

[5]

10

Improvements on LZ77 Algorithm

S  Encode the token with variable-length codes rather than fixed-length codes, e.g.
LZX uses static canonical Huffman trees to provide variable-size, prefix codes for
the token.

S  Vary the size of the search and look-ahead buffers to some extent.

S  Use more effective match-search strategies, e.g. LZSS establishes the search buffer
in a binary search tree to speed up the search.

S  Compress the redundant token (offset, match length, next symbol), e.g. LZRW1
adds a flag bit to indicate if what follows is the control word (including offset and
match length) for a match or just a single unmatched symbol.

11

Disadvantages of LZ77 and its Variants

S  If a word occurs often but is uniformly distributed throughout the text. When this
word is shifted into the look- ahead buffer, its previous occurrence may have
already been shifted out of the search buffer, then no match can be found even
though this word has appeared before.

S  A big trade-off: size L of the look-ahead buffer. Longer matches would be possible
and also compression could be improved if L is bigger, but the encoder would run
much more slowly when searching and comparing for longer matches.

S  A big trade-off: size S of the search buffer. A large search buffer results in better
compression because more matches may be found, but it slows down the encoder,
because searching takes longer time.

12

LZRW1 Algorithm

S  On the basis of LZ77, a hash table is used to help search a match faster. However it is fast but
not very efficient, since the match found is not always the longest.

3 symbols
(24-bit un-hash value)

12-bit
hash
value

e.g. Offset: 100
 Match Length: 6

[5]

13

Output Format of LZRW1 Encoder

16-bit
Control
Word

A B C D E F G H

0101 1011 1010 1000
0 indicates a literal
1 indicates a match

a literal

a match 12-bit offset

4-bit match
length

S  Obviously, groups have different lengths. The last group may contain fewer than 16 items.

14

S  Ideally, the hash function will assign each different index to a unique phrase, but
this situation is rarely achievable in practice. Usually some even different phrases
could be hashed into the index, which is called Hash Collision. Therefore,
LZRW1 has such drawback that the use of hash table can lead to a little worse
compression ratio because of lost matches, even though hash table turns out to be
more efficient than search trees or any other table lookup structure.

Disadvantage of LZRW1

15

 … a b c d e … … a b c d e …

LZP Algorithm

contexts

Offset:

Match Length: 3

[5]

16

Output Format of LZP1

A B C D E F G

a literal

a control byte

… …

output stream

flags + match lengths
or only flags
or only match lengths

S  LZP has 4 versions, called LZP1 through LZP4, where LZP1 is mainly used in my implementation.

S  An “average” input stream usually results in more literals than match length values, so it makes sense
to assign a short flag (less than one bit) to indicate a literal, and a long flag (a little longer than one
bit) to indicate a match length.

flag “1” two consecutive literals

flag “01” a literal followed by a match length

flag “00” a match length

17

S  The scheme of encoding match lengths is shown below. The codes are 2 bits initially. When these 2 bits
are all used up (“11”), 3 bits are added. When these are also all used up (“11111”), 5 bits are added.
From then on another group of 8 bits is added when all the old codes have been used up.

Output Format of LZP1

Length Code Length Code

1 00 11 11|111|00000

2 01 12 11|111|00001

3 10 : :

4 11|000 41 11|111|11110

5 11|001 42 11|111|11111|00000000

6 11|010 : :

: : 296 11|111|11111|11111110

10 11|110 297 11|111|11111|11111111|00000000

18

Example

x y a b c a b c a b $ % * & x y a b c a

input stream

x y a b c a b 3 $ % * & x y 4

contexts

match length

contexts

match length

contexts

control bytes: 11101101 11001100 0-------
flag: a literal followed
by a match length

match length 3

flag: a match length

match length 4 “ - “ i n d i c a t e s a n
unknown flag bit. If
m o r e s y m b o l s a r e
added to the input
string in the following,
these unknown flags
will be written in the
same way as before. If
no more symbol is
added, i.e. the encoder
meets the end of input
stream, in my design,
all the “-”s will be
replaced by “1”.

x y a b c a b $ % * & x y output stream

!!It is true that no offset is required,
however the redundant contexts
“ab” must be encoded as raw literals
with the length of 2 bytes on the
compressed stream to specify the
position of matched items.

19

LZP Compressor in FPGA Implementation

20

LZPCompressor.vhd

ClkxCI

RstxRI

DataInxDI

StrobexSI

FlushBufxSI

DonexSO

DataOutxDO

HeaderStrobexSO

OutputValidxSO

Top-Level Module

 I II III IV

 I II III IV

 I II III IV

 I II III IV

 I contains:
FSM controlling look-ahead buffer to start reading input stream
until all input data is shifted out;
A actual shift register for look-ahead buffer with the variation of
its effective length;
Storing input stream in search buffer;
Calculating address of pointer to the beginning of look-ahead
buffer and storing it into a certain position in hash table;
Counting the number of processed bytes in search buffer.

II waits for the read-back data from search buffer.

III

IV

attains a candidate string of 16 bytes from the search
buffer according to the search pointer stored in the
hash table.

compares this candidate string of 16 bytes with the
16 bytes data in the look-ahead buffer to calculate
the match length…

S  16-byte look-ahead buffer, 4-stage pipeline operations, some glue logic

21

hash.vhd

ClkxCI

RstxRI

NewEntryxDI

EnWrxSI

Key0xDI

OldEntryxDO

Key1xDI

Hash Table Module

S  Two 2 KB Xilinx Block RAMs with RAMB16BWER configuration are used to
implement the 4 KB long hash table.

S  Two-byte-wide key is hashed using the hash function written in VHDL as follow:

S  The second hash function is a modified method based on the first one. It can
reduce some more hash collisions, which leads to better compression.

RAMB16BWER
22

searchbuffer.vhd

ClkxCI

RstxRI

WriteInxDI

WExSI

ReadBackAdrxDI

NextWrAdrxDO

ReadBackxDO

RExSI

Search Buffer Module

S  It is implemented with two 2 KB Xilinx Block
RAMs. It can store the input stream and also read
back the candidate string for match length checking.

23

comparator.vhd

LookAheadxDI

LookAheadLenxDI

CandidatexDI

CandidateLenxDI

MatchLenxDO

Comparator Module

S  Once a candidate has been loaded from the search
buffer, this unit compares it to the current look-ahead
buffer and determines how many bytes match.

S  For convenience of implementation, the first 2
symbols in the look-ahead buffer are treated as the
contexts.

S  When a match is found, the comparator firstly
checks if the contexts are the same to avoid hash
collision, then compares the following 14 symbols.

S  So actually the maximum match length is allowed to
be 14. Due to utilization of 2 Block RAMs in the
search buffer, the length of the read-back candidate
string is restricted to 16.

24

OutputEncoder.vhd

ClkxCI

RstxRI

EnxSI

MatchLengthxDI

EndOfDataxSI

HeaderStrobexSO

DataOutxDO

OutputValidxSO

DonexSO

LiteralxDI

Output Encoder Module

S  The output encoder encodes the literals and match
items with control bytes, and writes them in
serialized form in a simple synchronous circular
FIFO that is 20 bytes long.

S  Once a frame including a control byte followed by a
group of literals is finished, FIFO starts to read out
the encoded data in this frame. If read pointer
overlaps with write pointer at same position, FIFO
can stop reading out for a moment.

S  At the first try, the simple 4-bit fixed-size method was
used to encode match length. At the second try, the
similiar variable-size method of LZP1 was used in
order to improve compression ratio, but the
maximum match length is restricted to 14.

Length Code Length Code

1 00 11 11|111|00000

2 01 12 11|111|00001

3 10 : :

4 11|000 41 11|111|11110

5 11|001 42 11|111|11111|00000000

6 11|010 : :

: : 296 11|111|11111|11111110

10 11|110 297 11|111|11111|11111111|00000000

Length Code

11 11|111|00

12 11|111|01

13 11|111|10

14 11|111|11

25

S  Performance comparisons between LZRW1 and four implementations of LZP with different
match length encoding schemes and different hash functions.

S  This comparison is made in condition of the same input stream to be read in containing
randomly chosen and redundant contents with the size of 9189 Bytes, and based on Xilinx ISE
synthesis results and ISim simulation reults on the platform of Xilinx Spartan-6 FPGA.

Performance Evaluation

LZP (variable-size match length) LZP (fixed-size match length)

 LZRW1 Inferior Hash
Function

Improved
Hash Function

 Inferior Hash
Function

Improved
Hash Function

 Size of Uncompressed Input Stream 9189 Bytes

 Size of Compressed Stream 7333 Bytes 7311Bytes 7527 Bytes 7505 Bytes 5639 Bytes

Compression Ratio 79.80% 79.56% 81.91% 81.67% 61.37%

 No. of Matches Found 1440 1499 1440 1499 1628

 No. of Clock Cycles required by
Execution (estimated by simulation)

 18436 18428 18433

 Minimum Time Period
(estimated by synthesis)

 15.748 ns 14.679 ns 13.022 ns

Maximum Frequency
(estimated by synthesis)

 63.5 MHz 68.1 MHz 76.8 MHz

 FPGA Resource Utilization Ratio
(estimated by synthesis)

 16 % 7 % 6 %

 Compression Speed 31.65 MB/s 33.97 MB/s 38.28 MB/s

S  This specific instance of comparisons among LZRW1 and four implementations of LZP with different match length encoding
schemes and different hash functions is made in condition of the same input stream to be read in containing randomly chosen and
redundant contents with the size of 9189 Bytes.

S  Compression Ratio = Size of Compressed Stream / Size of Input Stream

S  Compression Speed = Size of Uncompressed Input Stream / (No. of Time Clocks required by Execution × Minimum Time Period)

26

S  Two kinds of corpus commonly used benchmarks:

S  Calgary Corpus (a set of 18 files including text, image, and object files with totally more than 3.2 million bytes)

S  Canterbury Corpus (another collection of files based on concerns about how representative the Calgary corpus is)

 LZP (variable-size match
length, improved hash function)

LZRW1

 alice29.txt 80.98% 61.20%

fields.c 59.14% 44.96%

lcet10.txt 79.30% 59.06%

plrabn12.txt 88.40% 67.76%

cp.html 67.07% 52.47%

grammar.lsp 59.71% 49.05%

xargs.l 72.96% 57.96%

asyoulik.txt 81.65% 63.07%

 Compression ratios comparisons between LZRW1 and LZP tested by Canterbury Corpus

Performance Evaluation

27

LZP Decompressor

S  The LZP decompressor is implemented in C language. It can not only decompress the compressed
stream, but also verify the correctness of compressed stream through comparing the decompressed
stream with the original input stream. After many times and kinds of tests, the functional
correctness of the LZP compressor can be guaranteed.

S  Furthermore, compared to the LZRW1 decoder, actually LZP decoder is more complex because a
hash table is a must to also know the position nformation by hashing contexts.

28

LZP Decompressor

29

Conclusions and Future Work

S  The LZP algorithm has good intention to improve the state-of-the-art compression algorithm. The
good strategies of encoding control flags and match lengths should be affirmed. However, it pays
more cost to replace the offset by the context, which results in worse compression performance in
fact. So it is a regret for my work that the goal of optimizing compression has not been realized.

S  In future work, it is very necessary to be more cautious to select or to optimize an algorithm for
implementation. And some other optimization techniques should be possibly considered, for
example, more than one compressor process different input blocks divided from a same input
stream in parallel.

30

References

[1] http://en.wikipedia.org/wiki/Morse_code
[2] https://www.scribd.com/doc/190107945/20-Compression
[3] http://www.ieeeghn.org/wiki/index.php/History_of_Lossless_Data_Compression_Algorithms
[4] http://www.heliontech.com/downloads/lzrw3_xilinx_datasheet.pdf#view=Fit
[5] David Salomon, G. Motta, D. Bryant, “Data Compression: The Complete Reference”, Springer Science
 & Business Media, Mar 20, 2007.

31

Thank you!

32

