0000 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source	Summary 00 0
--	---------------------------	---------------------------------	-------------------------------------	-------------	--------------------

The Hardware Design Toolchain Approaches and State of the Art

Fredo Erxleben

September 17, 2014

	Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
--	---------------------------	---------------------------------	-------------------------------------	-------------------	--------------------

We will hate the tools	(FCCM 1996 prediction for 2001)
We will still hate the tools	(FCCM 1998 prediction for 2003)
We will merely dislike the tools	(FCCM 2000 prediction for 2005)
We [will] hate the tools more	(FCCM 2007 prediction for 2012)

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < ⊃ < 2/34

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
---------------------------	---------------------------------	-------------------------------------	-------------------	--------------------

Outline

Introduction

The Tools

Chaining Tools together

Open Source

Summary

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 3/34</p>

	Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
--	---------------------------	---------------------------------	-------------------------------------	-------------------	--------------------

Introduction Motivation Some basics first

The Tools

Chaining Tools together

Open Source

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ⑦ Q @ 4/34

Introduction	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
Motivation				

Why bother?

- Complexity of ...
 - ... designs
 - ... the design process
- ► Tools are ...
 - ... rarely known to developers
 - ... of unknown usefulness
 - ...(not?) adequate?

<ロト < 団 > < 臣 > < 臣 > 臣 の < で 5/34

Introduction ○ ●○○○	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
Some basics first				

HDLs: General

Everything below RTL is often specific to the HW-vendor \rightarrow HDLs also serve as interfaces

- VHDL
- Verilog
- SystemC, ABEL, JHDL...

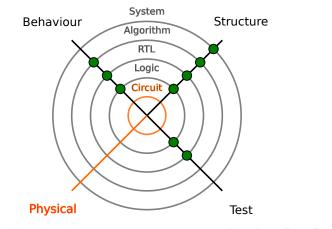
00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
			(
	00 000000		

Some basics first

HDLs: VHDL and Verilog

Most commonly used HDLs. VHDL...

- ... originated from Ada
- ... can cover structure, behavior and some testing
- ... is consequently very complex


Verilog. . .

- ... is extended to SystemVerilog
- ... resembles C

	Introduction O OOOO	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
--	---------------------------	---------------------------------	-------------------------------------	-------------------	--------------------

Some basics first

The extended Gajski-Kuhn Chart

<□> <□> <□> <□> < ⊇> < ⊇> < ⊇> < ⊇ < ⊃へ < 8/34

Introduction O OOOO	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary 00 0
	1			

Some basics first

Criteria for Tool Evaluation

- The field of application [5].
- The design of human interaction
- Availability and openness
- Tool-chain integration capabilities

Introduction	The Tools	Chaining Tools together	Open Source	Summary
0000	00 000000 00	000	00	00

Introduction

The Tools Specification HLS, HDL generation and editing Test and Verification

Chaining Tools together

Open Source

Introduction 0 0000	The Tools ● 0 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
Specification				

Specification: Why dedicated tools?

Specification is tightly linked to verification. Verification should be done by automated tools.

 \rightarrow Specification should be formalized and machine-readable.

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ の 11/34

Introduction 0 0000	The Tools ○● ○○○○○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
C 10 11				

Specification

Specification: Where are we now?

- State of the art
 - Text, tables, graphics
 - not formalized at all
- Approaches
 - ▶ try UML [1]
 - embed spec. in VHDL [11]
- ... purely academic

Introduction 0 0000	The Tools ○○ ●○○○○○ ○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0	

HLS, HDL generation and editing

HLS from High-level Languages

Idea

Write in an HLL, like you do with software. Let the tools do the rest...

- ► C/C++ [13]
- Haskell [3][12]
- Java \rightarrow JHDL
- Matlab [2]

Introduction 0 0000	The Tools ○○ ○●○○○○ ○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0	

HLS, HDL generation and editing

Approach: Evolutionary Algorithms

Idea

Only describe the environment conditions. Let the algorithm figure out the best solution.

- Might work for optimization
- Not useful for new designs
- Purely academic for now. [8]

Introduction 0 0000	The Tools ○○ ○○●○○○ ○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
LUC LUDI	1			

HLS, HDL generation and editing

HLS by Dedicated Tools

Idea

Have a tool for each specific part of the design. Control it by providing some parameters.

FloPoCo[4]

... is a generator for arithmetic cores for FPGAs

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ の � ♀ 15/34

Introduction 0 0000	The Tools ○○ ○○●○○ ○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
HLS, HDL generation	on and editing			

HLS from Visual Representations

Idea

Design by placing and connecting components using a GUI. Translate the resulting layout into an HDL.

Show-off *Qucs*

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 16/34

Introduction 0 0000	The Tools ○○ ○○○○●○ ○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
HLS, HDL generati	on and editing			

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 = ∽��♡ 17/34

Editing Tool Requirements

Editing tools should help to tame the complexity of HDLs.

- Different views on design
- Code navigation
- Code completions
- Shortcuts for repeated tasks
- Code refactoring
- Enforcement of conventions

Show-off SigasiPro

Introduction 0 0000	The Tools ○○ ○○○○○● ○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
HLS, HDL generation	on and editing			

Also: documentation

High design complexity

 \rightarrow extensive user and developer documentation required Documentation quality impacts productivity!

Available tools VHDLDoc, doxygen-VHDL, VHDocl

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ のへで 18/34

Introduction 0 0000	The Tools ○○ ○○○○○○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
Test and Verification	n			

Considerations on $T\!+\!V$

- ► No tools focused on HW-design T+V
- Tool-assisted verification requires formalized spec
- Testing very much limited to
 - runtime assertions
 - waveform inspection
 - (JTAG)

Introduction 0 0000	The Tools ○○ ○○○○○○	Chaining Tools together 000 0	Open Source 00	Summary 00 0
Test and Verification	1			

State of the Art

Testing Whatever your HDL offers you...

Verification SPIN [10], HDL features

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ のへで 20/34

Introduction	The Tools	Chaining Tools together	Open Source	Summary
0000	00 000000 00	000	00	00

Introduction

The Tools

Chaining Tools together

Considerations regarding Toolchains Exchange formats

Open Source

Summary

<□▶ < □▶ < ■▶ < ■▶ < ■▶ ○ Q C 21/34

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together ●○○ ○	Open Source 00	Summary 00 0	

Considerations regarding Toolchains

Chaining: Why bother?

One tool can not cover the whole design process. But. . .

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ○ 22/34

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 0●0 ○	Open Source 00	Summary 00 0
Considerations rega	rding Toolchains			

Behold!

One-vendor-to-rule-them-all-policies

Figure: Source: wikipedia

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の < ℃ 23/34

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 00● ○	Open Source 00	Summary 00 0

Considerations regarding Toolchains

Difficulties when creating Toolchains

- \blacktriangleright Communication between tools in the chain \rightarrow exchange formats
- Specialized tools rarely support many formats
- Chain needs to be set up manually

The true chore

Which tool is the right one? Does my tool fit in the chain?

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together ○○○ ●	Open Source 00	Summary 00 0
Exchange formats				

Exchange formats

- EDIF
 - Attempt to create industry standard (1985)
 - State: abandoned
- BLIF
 - Attempt to create academic standard (1992)
 - State: rarely used at best
- some HDL
 - limited to capabilities of the HDL

|--|

Introduction

The Tools

Chaining Tools together

Open Source Why and What

Summary

<□▶ < □▶ < □▶ < ■▶ < ■▶ < ■ のへで 26/34

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source ●○	Summary 00 0

Why and What

Open Source: Why bother?

- Tools can get widespread
- Closer interaction Developer \leftrightarrow User
- Less effort for customization
- High number of potential developers

Disclaimer

Complex tools need high initial effort

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source ⊙●	Summary 00 0
Why and What				

What is out there?

Design Qucs, fritzing HLS JHDL + JHDL-CAD [7] Simulation GHDL, FreeHDL Below RTL ABC [6], open HW-Platforms [14]

< □ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 28/34

Introduction	The Tools	Chaining Tools together	Open Source	Summary
0000	00 000000 00	000	00	00 0

Introduction

The Tools

Chaining Tools together

Open Source

Summary Improvements Further reading

<□▶ < □▶ < □▶ < ■▶ < ■▶ < ■ のへで 29/34

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary O O

Improvements

Suggested Improvements (by others)

- Formulation (Specification)
- Resource and Performance prediction
- Modeling techniques
- Bridge between formulation and design phase
- Reduced translation and routing times
- also see [9]

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary ○● ○

Improvements

Suggested Improvements (by me)

- user interaction, usability
- content awareness
- chaining capabilities
- openness...

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 31/34

	Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary ○○ ●
--	---------------------------	---------------------------------	-------------------------------------	-------------------	--------------------

Further reading

Some Papers I

Terry Bahill and Jesse Daniels.

Using objected-oriented and uml tools for hardware design: A case study. Systems Engineering, 6(1):28–48, 2003.

P. Banerjee, D. Bagchi, M. Haldar, A Nayak, V. Kim, and R. Uribe.

Automatic conversion of floating point matlab programs into fixed point fpga based hardware design. In Field-Programmable Custom Computing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on, pages 263–264, April 2003.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

シママ 32/34

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh.

Lava: Hardware design in haskell. SIGPLAN Not., 34(1):174–184, September 1998.

Florent de Dinechin and Bogdan Pasca.

Designing custom arithmetic data paths with flopoco. *IEEE Design & Test of Computers*, 28(4):18–27, 2011.

Douglas Densmore, Roberto Passerone, and Alberto Sangiovanni-Vincentelli.

A platform-based taxonomy for esl design. IEEE Design and Test of Computers, 23(5):359–374, 2006.

Berkeley Logic Synthesis Verification Group.

ABC: A System for Sequential Synthesis.

00	Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source	Summary ○○ ●
----	---------------------------	---------------------------------	-------------------------------------	-------------	--------------------

Further reading

Some Papers II

B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and M. Rytting.

A CAD suite for high-performance FPGA design.

In Field-Programmable Custom Computing Machines, 1999. FCCM '99. Proceedings. Seventh Annual IEEE Symposium on, pages 12–24. IEEE, 1999.

Paul Layzell.

A new research tool for intrinsic hardware evolution.

In Moshe Sipper, Daniel Mange, and Andrés Pérez-Uribe, editors, *Evolvable Systems: From Biology to Hardware*, volume 1478 of *Lecture Notes in Computer Science*, pages 47–56. Springer Berlin Heidelberg, 1998.

S.G. Merchant, B.M. Holland, C. Reardon, A.D. George, H. Lam, G. Stitt, M.C. Smith, N. Alam,

I. Gonzalez, E. El-Araby, P. Saha, T. El-Ghazawi, and H. Simmler. Strategic Challenges for Application Development Productivity in Reconfigurable Computing. In Aerospace and Electronics Conference, 2008. NAECON 2008. IEEE National, pages 209–218. IEEE, 2008.

Budi Rahardjo.

Spin as a hardware design tool.

In Proc. First SPIN Workshop. INRS Quebec, Canada, 1995.

R. Reetz, K. Schneider, and T. Kropf.

Formal specification in VHDL for hardware verification. In Design, Automation and Test in Europe, 1998., Proceedings, pages 257–263. IEEE, 1998.

Introduction 0 0000	The Tools 00 000000 00	Chaining Tools together 000 0	Open Source 00	Summary ○○ ●

Further reading

Some Papers III

Mary Sheeran.

Hardware design and functional programming: a perfect match. Journal of Universal Computer Science, 11(7):1135–1158, jul 2005. |http://www.jucs.org/jucs_11.7/hardware_design_and_functional---.

S. Vernalde, P. Schaumont, and I Bolsens.

An object oriented programming approach for hardware design. In VLSI '99. Proceedings. IEEE Computer Society Workshop On, pages 68–73, 1999.

Aaron Weiss.

Open source hardware: Freedom you can hold? netWorker, 12(3):26–33, September 2008.

<ロト < 母 ト < 臣 ト < 臣 ト 三 のへで 34/34