Technische Universität Dresden, Fakultät Informatik, Institut für Technische Informatik

Entwurf und Realisierung einer hochparallelen Berechnung auf verteilten FPGA-Knoten zur Enumerierung des 27-Damenproblems Vortrag zur Studienarbeit

Benedikt Reuter

Gliederung

Einleitung

Lang laufende, hochparallele, verteilte Berechnungen

- Verteilte Systeme
- SETI@home
- BOINC
- Nqueens@Home
- Queens@TUD

Implementierung

- Aufgabenanalyse
- Server
- Client
- FPGA
- Nachrichtenformat
- Ablauf und Abbruchsicherheit

Erste Ergebnisse

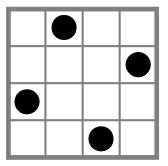
Zusammenfassung und Ausblick

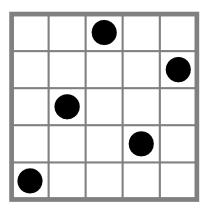
EINLEITUNG

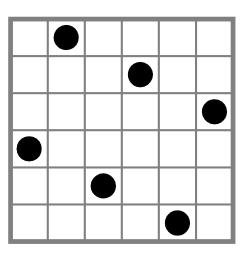
10.09.2015 Studienarbeit Folie Nr. 3 von 49

- wichtig in der Informatik die Eigenschaften von Recheneinheiten zu ermitteln
- durch Lösung von Problemen die:
 - immer gleich Berechnungsaufwändig,
 - gut skalierbar sind und
 - zu denen vor allem die korrekten Lösungen bereits bekannt sind.

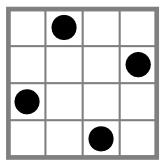
10.09.2015 Studienarbeit Folie Nr. 4 von 49

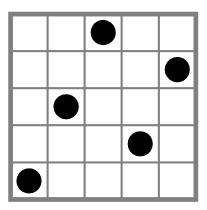


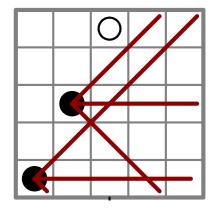

- viele Benchmark-Algorithmen [BYF+09] geben Aufschluss über jeweils unterschiedliche Eigenschaften, z.B.:
 - Speichergröße, -bandbreite,
 - Berechnungsgeschwindigkeit
- hängt von Bauteileigenschaften
- und Algorithmus ab:
 - Menge der zwischenzuspeichernden Daten
 - Frequenz der Speicherzugriffe
 - Abhängigkeit der Rechenschritte voneinander
 - Parallelität

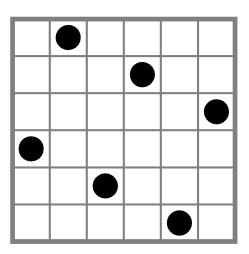

10.09.2015 Studienarbeit Folie Nr. 5 von 49

N-Dameproblem

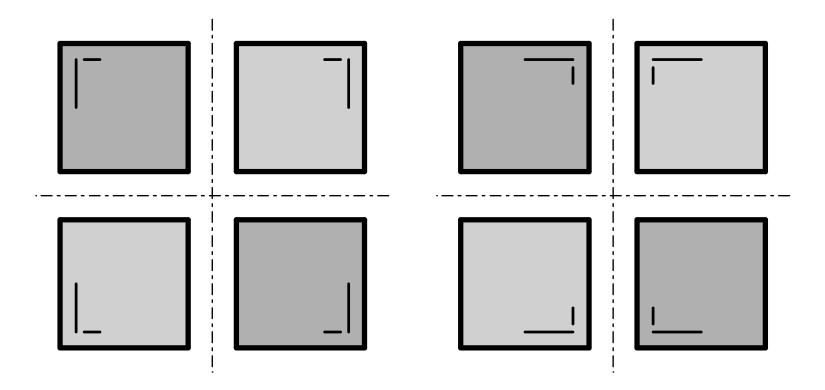





10.09.2015 Studienarbeit Folie Nr. 6 von 49

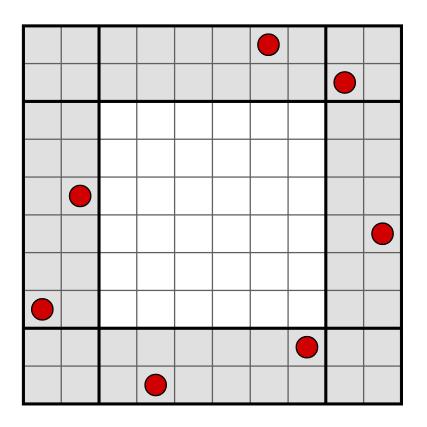


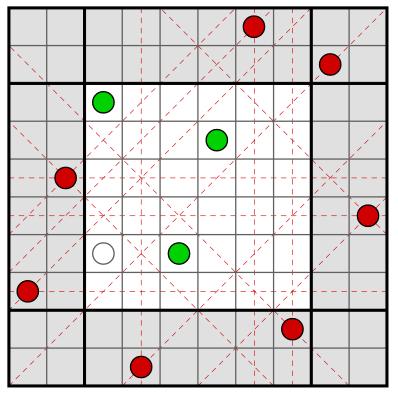
N-Dameproblem



N	Total	Fundamental	N	Total	Fundamental
1	1	1	14	365596	45752
2	0	0	15	2279184	285053
3	0	0	16	14772512	1846955
4	2	1	17	95815104	11977939
5	10	2	18	666090624	83263591
6	4	1	19	4968057848	621012754
7	40	6	20	39029188884	4878666808
8	92	12	21	314666222712	39333324973
9	352	46	22	2691008701644	336376244042
10	724	92	23	24233937684440	3029242658210
11	2680	341	24	227514171973736	28439272956934
12	14200	1787	25	2207893435808352	275986683743434
13	73712	9233	26	22317699616364044	2789712466510289

10.09.2015 Studienarbeit Folie Nr. 8 von 49


• Optimierung für 8-fachen Speedup



10.09.2015 Studienarbeit Folie Nr. 9 von 49

koronaler Ansatz

10.09.2015 Studienarbeit Folie Nr. 10 von 49

- Dameproblem gut geeignet
 - bes. aufgrund der guten Skalierbarkeit
 - Wird N um 1 erhöht, so wächst der Rechenaufwand um ein Vielfaches gegenüber dem benötigten Speicher
 - Gut Parallelisierbar
 - koronaler Ansatz
 - Immer gleiche Anzahl von Rechenoperationen Notwendig
 - Recht eindeutiger Algorithmus

10.09.2015 Studienarbeit Folie Nr. 11 von 49

LANG LAUFENDE, HOCHPARALLELE, VERTEILTE BERECHNUNGEN

10.09.2015 Studienarbeit Folie Nr. 12 von 49

Verteilte Systeme

A. S. Tannenbaum:

Zusammenstellung unabhängiger Computer zu einzigem, kohärent erscheinenden System

Ziele: Ressourcen verfügbar machen transparente Aufteilung Skalierbarkeit

10.09.2015 Studienarbeit Folie Nr. 13 von 49

Verteilte Systeme

Vorteile:

- Skalierbarkeit
- Energieersparnis durch Parallelität
 - exp. Wärme
- evtl. Günstiger
- Ausfallsicherheit

Nachteile:


- Kommunikation
 - kostet Energie
 - langsam
- parallelisierbares Problem
- größerer Entwicklungsaufwand
- mehr Hardware benötigt

SETI@home

Search for Extraterrestrial Intelligence

Funksignale aus dem All → außerirdische Intelligenz

Quelle: https://en.wikipedia.org/wiki/Arecibo_Observatory (05.09.15)

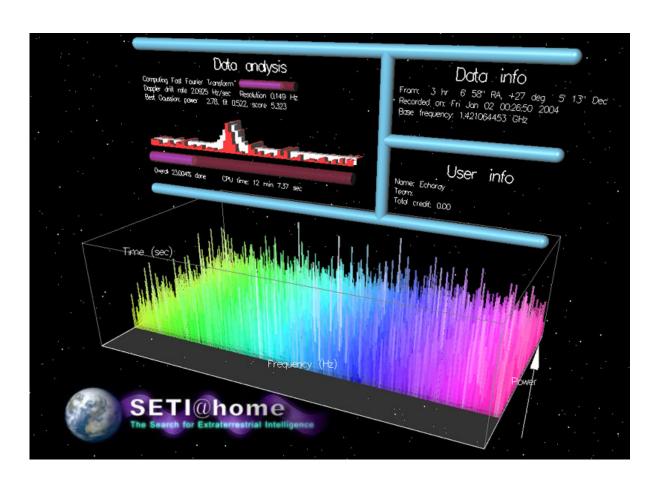
SETI@home

Zusätzlichen Sensor angebracht

Liefert große Datenmengen

In viele kleine Teilprobleme

Quelle: https://en.wikipedia.org/wiki/Arecibo_Observatory (05.09.15)



SETI@home

Teilprobleme per HTTP zu Client

Suche nach Signalen auf verschiedenen Frequenzen

Bildschirmschoner als Feedback

Quelle: https://de.wikipedia.org/wiki/SETI@home (05.09.15)

BOINC

Berkeley Open Infrastructure for Network Computing

Weiterentwicklung von SETI@home für andere Problemstellungen

Platform für Wissenschaftler mit eigener API zur einfachen Erstellung von verteilten Anwendungen

10.09.2015 Studienarbeit Folie Nr. 18 von 49

BOINC

Gleiche Funktionsweise wie SETI@home

Clienten können selbst entscheiden, welches Projekt sie unterstützen ob es im Hintergrund/ILDE rechnet

Kommunizieren nur mit Server der jeweiligen Projekte

10.09.2015 Studienarbeit Folie Nr. 19 von 49

NQueens@Home

N=26 Dameproblem

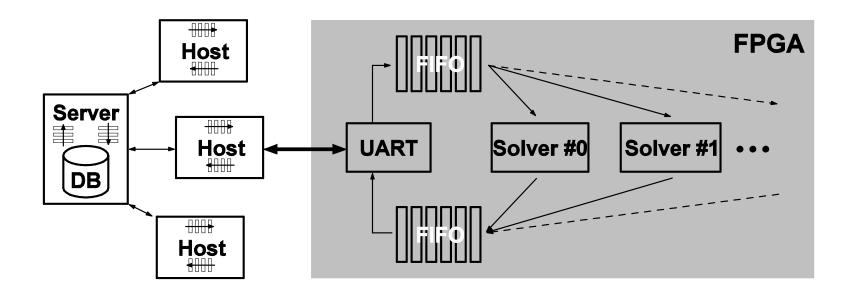
auf BOINC-Platform implementiert

Überlauffehler in Implementierung, wurde behoben

eingestellt nachdem Queens@TUD Lösung ermittelt hatte

Technische Universität Dresden, Fakultät Informatik, Institut für Technische Informatik

Queens@TUD

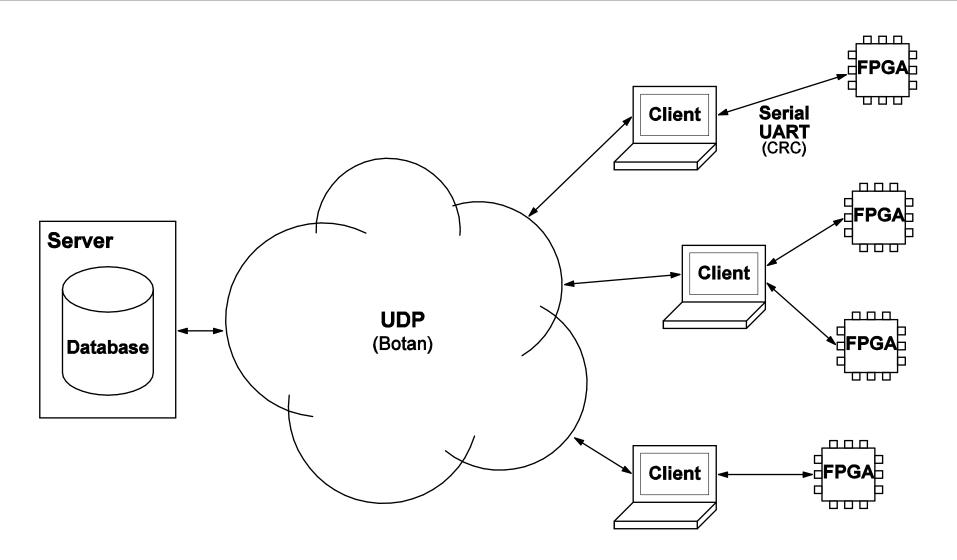

N=26 Dameproblem

Horizontal gespiegelte Lösungen berücksichtigt spezialisierte Berechnung durch FPGA's

TU-Dresden, 2008 gestartet Juli 2009 beendet

Queens@TUD

IMPLEMENTIERUNG


10.09.2015 Studienarbeit Folie Nr. 23 von 49

Aufgabenanalyse

- Enumerierung des 27-Damenproblems
- hochparallel und verteilt auf FPGA's
- entworfen und realisiert
- Fortführung der Berechnung bei teilweisen oder vollständigen Unterbrechungen
- Festlegung auf verwendete Datenformate und Kommunikationsprotokolle
- Abschätzung der Gesamtlaufzeit

10.09.2015 Studienarbeit Folie Nr. 25 von 49

Server

- UDP-Server in C++ implementiert
- Datenbank als binäre Datei
 - Vorplatzierung im Voraus erstellt
- Server spiegelt Datenbank in Arbeitsspeicher
 - Boost-Bibliotheken
 - minimaler Speicherplatz
 - besonders schneller Zugriff

Technische Universität Dresden, Fakultät Informatik, Institut für Technische Informatik

	Spezifikationstabelle			Lösungstabelle		
Bits	Breite	Beschreibung	Bits	Breite	Beschreibung	
[Vorplatzierung]		[Löser-ID]				
63-60	4	wa - West	63	1	Vorplatzierung gesendet	
59-55	5	wb	62-52	11	Löser-ID	
54-50	5	na - North				
49-45	5	nb				
44-40	5	ea - East				
39-35	5	eb				
34-30	5	sa - South				
29-25	5	sb				
24-23	2	sym - Symmetrie:				
		3-Keine, 2-Punkt, 1-Rotation				
22-20	3	CRC-3 über 63-23				
		(Generator: 0xB)				
	[Zeitstempel]		[Lösungszahl]			
19-18	2	jahr-2015	51-48	4	cnt%13	
17-14	4	monat	47-44	4	cnt%15	
13-9	5	tag	43-0	44	cnt - Lösungszahl	
8-4	5	stunde				
3-0	4	minute/4				

Server

- Server iteriert durch Datenbank
- gibt Probleme nach 24h erneut aus
 - Ebenfalls bei erreichen des Endes
- Botan
 - Server kennt öffentlichen Schlüssel der Client's
- prüft empfangene Probleme auf Fehler
 - Erstellt eine Logdatei

Client

- Schnittstelle zwischen Server und FPGA
- leitet Nachrichten vom FPGA signiert an den UDP-Server weiter
- kennt die IP vom Server und eigene ID
- leitet empfangene Vorplatzierungen vom Server an den FPGA weiter (UART)

10.09.2015 Studienarbeit Folie Nr. 29 von 49

FPGA

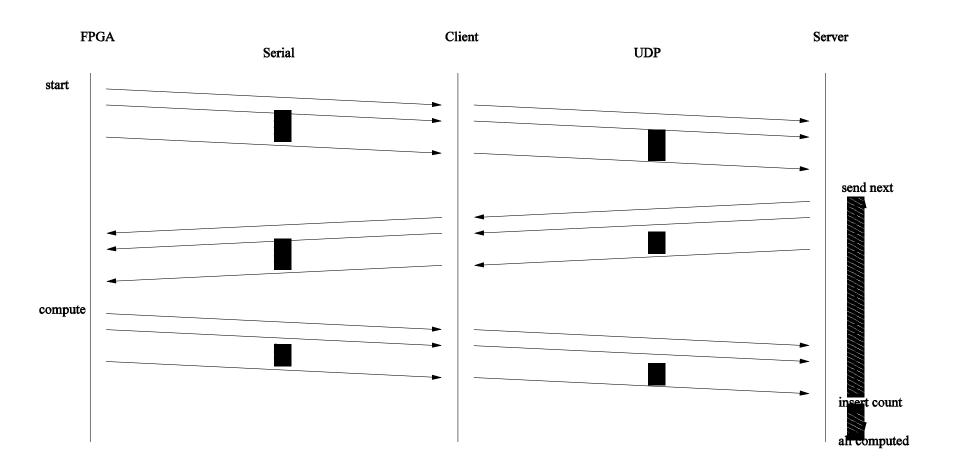
- Recheneinheit des verteilten Systems
- ermittelt Anzahl der möglichen Anordnungen je Vorplatzierung
- pro FPGA mehrere Löser implementiert
- in Kettenstruktur angeordnet
 - kurze Wege mögliche
 - Routing benötigt mehr Takte
 - aber schnellere Frequenz möglich

Nachrichtenformat

Size	Bezeichnung	Beschreibung
8 Byte	spec	Vorplatzierung
8 Byte	count	Lösungszahl
1 Byte	mod15	Modulo 15
1 Byte	mod13	Modulo 13
2 Byte	solver	FPGA Version
4 Byte	client	Client ID

- Server → Client: nur Vorplatzierung
- Client → Server: alles signiert

10.09.2015 Studienarbeit Folie Nr. 31 von 49



Ablauf und Abbruchsicherheit

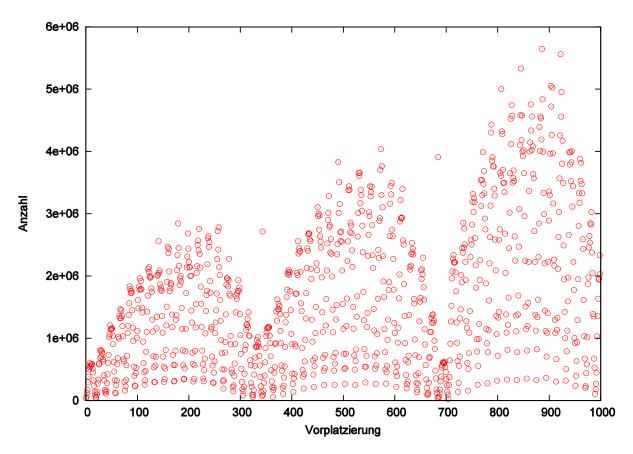
- UDP-Server weis nicht, welche Client's laufen und welche abgeschaltet sind
- Pakete, die dem Server gesendet werden wenn er nicht an ist, verfallen

10.09.2015 Studienarbeit Folie Nr. 32 von 49

10.09.2015 Studienarbeit Folie Nr. 33 von 49

ERSTE ERGEBNISSE

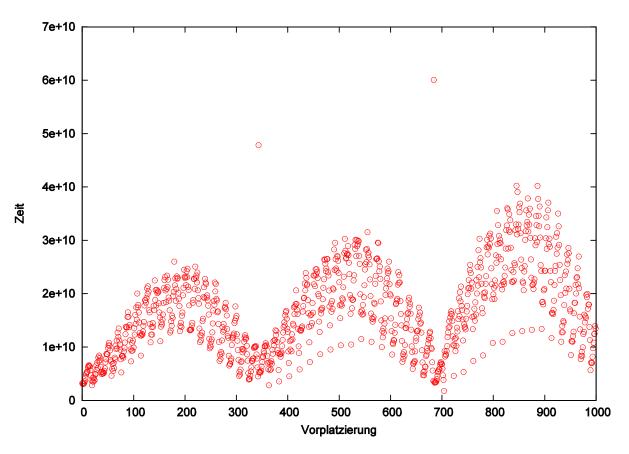
10.09.2015 Studienarbeit Folie Nr. 34 von 49


- Tests auf FPGA und Intel durchgeführt
 - Fehlerfreie Funktion
- Abschätzung der Rechenzeit
 Intel(R) Core(TM) i3-4130 CPU @ 3.40GHz

FPGA	Anzahl Löser	Frequenz
S4SK1000	9	86.7 MHz
ML505	21	177.7 MHz
ML506	21	181.8 MHz
VC707	215	233.3 MHz

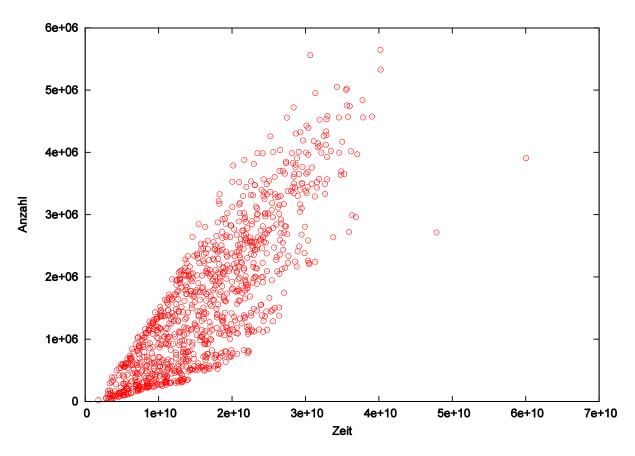
- dazu 5 Messreihen erstellt aus N=27-DB
- ML505-Solver ca. 4,7-mal schneller

10.09.2015 Studienarbeit Folie Nr. 35 von 49



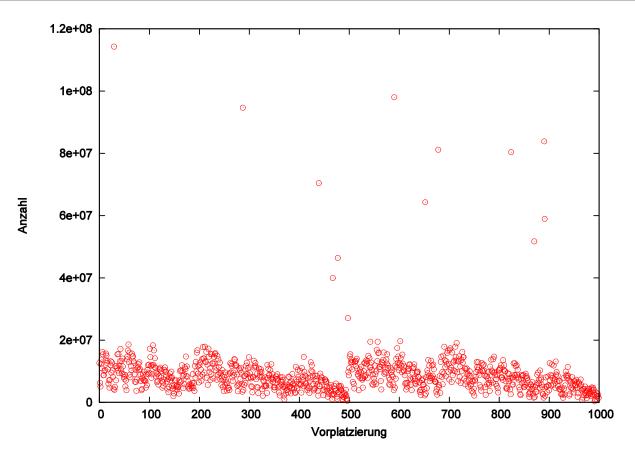
Anzahl erste 1000 Vorplatzierungen

- -Wellenmuster durch die systematische Erzeugung der Datenbank – meist nur eine Dame ein Feld versetzt
- ähnliche Abweichungen, aber nicht vorhersehbar



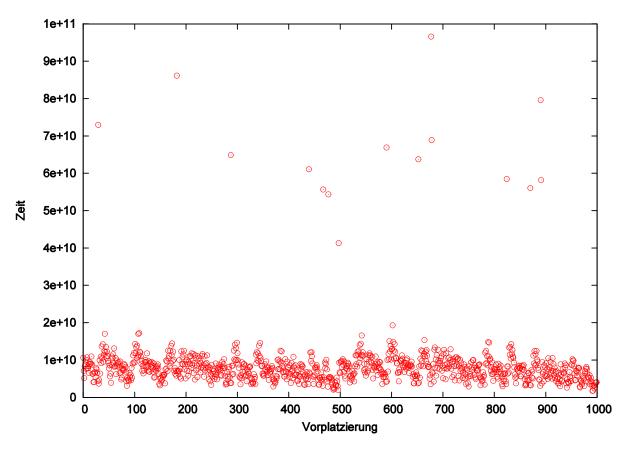
Anzahl der Taktzyklen über erste 1000 Vorplatzierungen

- ähnliches Muster bei Anzahl und bei Queens@TUD (N=26)
- Ausreißer interessant (doppelter Rechenaufwand)
 -ungünstige Anordnung der Blockierungsvektoren?

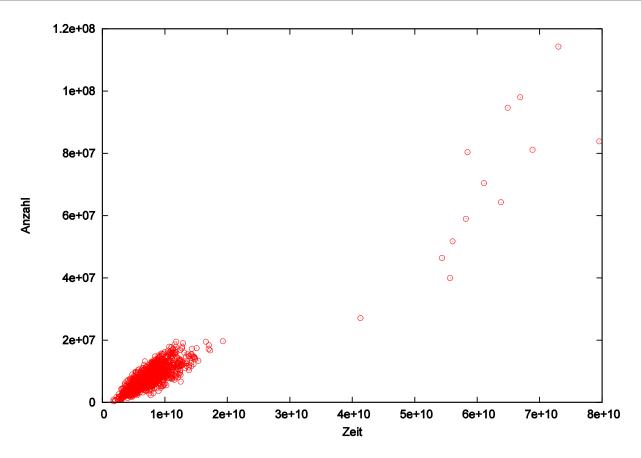


Lösungszahl zu Zeit über erste 1000 Vorplatzierungen

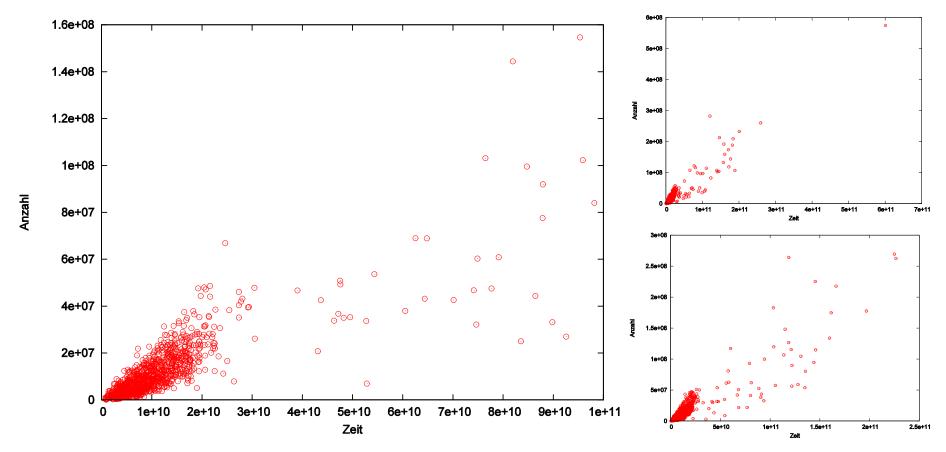
- kegelförmiger Bereich, Häufung der Werte
- meiste am Rand des Kegels
- besonders viele bei kleiner Zeit und Lösung



Anzahl der letzten 1000 Vorplatzierungen

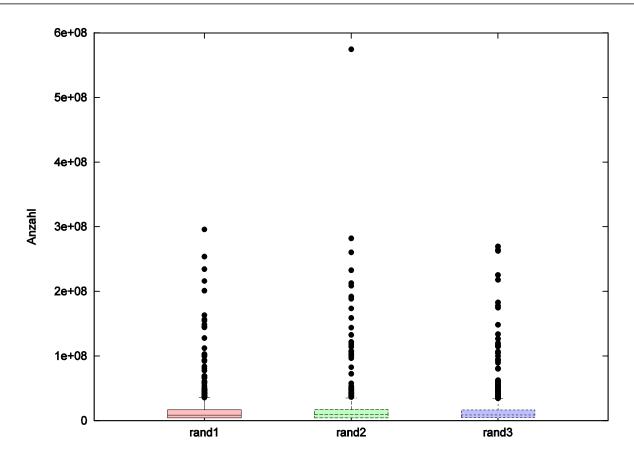

- kaum noch Wellenmuster
- gröbere Skalierung -> stärkere Ausreißer

Taktzyklen der letzten 1000 Vorplatzierungen -sehr Ähnlich zu Anzahl -> durch grobe Skalierung - durch Symmetrie/Rotation -> Vorplatzierungen nicht gespiegelt zu ersten 1000, sondern eher mittig.



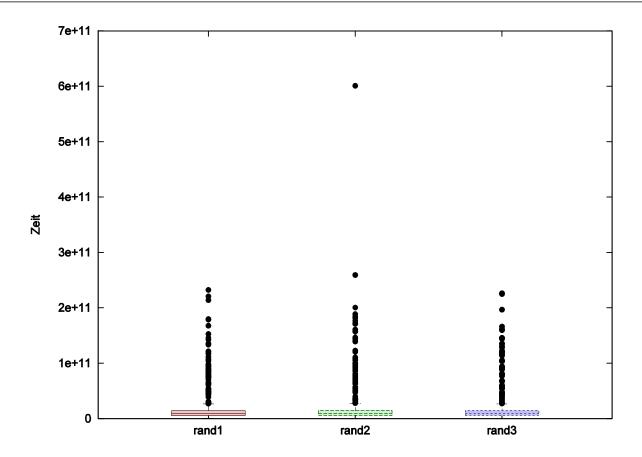
Verhältnis Anzahl zu Taktzyklen letzte 1000 Vorplatzierungen

- auch Ausreißer im Kegel
- meisten Werte vergleichsweise klein



Verhältnis Anzahl zu Zeit bei 1000 zufälligen Vorplatzierungen

- Streuung zur x-Achse hin -> viel Zeit für kleine Lösungen
- eine richtige Lösung füllt das gesamte Brett -> mehr Zeit



Kastengrafik - Anzahl bei 1000 zufälligen Vorplatzierungen

- -Messreihen ähneln sich sehr
- scheinbar wenig besonders große Ausreißer -> Spezialfälle

Kastengrafik - Taktzyklen bei 1000 zufälligen Vorplatzierungen

- Zeiten scheinen ähnlich zu Lösungen zu sein
 - große Achsenskalierung

	rand1	rand2	rand3
Minimum	4.907e+08	2.562e+08	3.235e+08
Unteres Quartil	5.576e+09	5.809e+09	5.959e+09
Median	9.173e+09	9.282e+09	9.708e+09
Mittelwert	1.421e+10	1.486e+10	1.447e+10
Oberes Quartil	1.422e+10	1.435e+10	1.439e+10
Maximum	2.323e+11	6.008e+11	2.264e+11

Mittelwert der Mittelwerte: 1.451e+10 Takte FPGA ML505 → Frequenz 172,2MHz

Zeit = Takte/Frequenz = 84,262485482 sec N=27 Datenbank → 4'171'594'444 Einträge Gesamtzeit = Zeit*Anzahl = ~11'146 Jahre FPGA ML505 → 21 Löser → ~531 Jahre Intel = ~4,7mal langsamer → ~52'386 Jahre

10.09.2015 Studienarbeit Folie Nr. 45 von 49

ZUSAMMENFASSUNG UND AUSBLICK

10.09.2015 Studienarbeit Folie Nr. 46 von 49

- Algorithmus recht optimal
 - Symmetrie und Rotation
- Verkürzung der Rechendauer durch neuere FPGA-Generationen
- FPGA's als Computerbestandteile in Computerverbunden
- Lösung mit Hilfe von CUDA
- Evtl. alles zusammen wie BOINC + FPGA

10.09.2015 Studienarbeit Folie Nr. 47 von 49

Literaturverzeichnis

[20115] Nqueens@home (beendet) - rechenkraft, Aug 2015.

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. Seti@home: An experiment in public-resource computing. Commun. ACM, 45(11):56–61, November 2002.

[And04] D.P. Anderson. Boinc: a system for public-resource computing and storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pages 4–10, Nov 2004.

[BYF+09] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on, pages 163–174, April 2009.

10.09.2015 Studienarbeit Folie Nr. 48 von 49

[FRvLP10] F. Feinbube, B. Rabe, M. von Lo?wis, and A. Polze. Nqueens on cuda: Optimization issues. In Parallel and Distributed Computing (ISPDC), 2010 Ninth International Symposium on, pages 63–70, July 2010.

[Fuj00] Richard M Fujimoto. Parallel and distributed simulation systems, volume 300. Wiley New York, 2000.

[PNS09] T. Preusser, B. Nägel, and R.G. Spallek. Putting Queens in Carry Chains. Technische Berichte. Techn. Univ., Fak. Informatik, 2009.

[que15] Queens@tud: Home, Aug 2015.

[TVS] ANDREW S TANENBAUM and MAARTEN VAN STEEN. Distributed systems.