

- Problem Analysis
- Design
- Implementation
- Conclusion
- Next Steps

Radiation and the TLK2711-SP

3.9 e-5

Two mechanisms (see [1]):

Bit errors effecting 1-8 bits

Burst errors effecting 100-1000 bits in a row

overall roughly 4.7 ·10-5 events/s

© 2015. Thales Alenia Space

Byte Alignment Recovery Test

Byte Alignment Recovery Test

8 ns clock slip with 10dB line attenuation

LOS- Behaviour Test

EM- and other influences negated by shielding and proper wiring

- Radiation most significant error source
- Nominal error rate negligible

- Overall Error rate < 5 · 10⁻⁵ events/s
- Composed of Bit- and Burst errors

Forward Error Correction:

not feasible → Burst errors

Hybrid Scheme:

→ no → more Burst errors than Bit errors

Bit errors affect single bits, or 8 bits at once

$$E(x) = \frac{L_{data}(x)}{(L_{frame}(x) + L_{gap} + L_{wait}) + (p_r(x) * (L_{frame}(x) + L_{gap} + L_{wait} + L_{loss}))}$$
 with:
$$L_{frame}(x) = L_{data}(x) + L_{head} + L_{foot}$$

$$p_r(x) = \frac{L_{frame}(x) * 16 \frac{bit}{word}}{n_{error}} * 1 error$$

	$ig L_{gap}$	$ig L_{wait}$	L_{head}	L_{foot}	L_{loss}
ARQ-Method	(word)	(word)	(word)	(word)	(word)
Stop-and-Wait	2	47	1	2	0
Go-Back-N	2	0	1	2	50
Selective-Repeat	2	0	1	2	0

Comparison of ARQs

Data line:

ACK line:

Control Chars chosen with increased HD to data words etc.

- CRC-32C over frame data
 - Max Frame size: HD = 4
 - Smaller Frames: HD > 6
 - Risk for missed Burst-Error < 2.9 ·10⁻³⁹
- Invalid 10b-Code indication from TLK
- Unused K-Chars
- Frame ID encoded with Hamming (8,4)

14

OPEN
© 2015. Thales Alenia Space

Thales Alenia
A Thomas / Francescon Carrious Space

Faulty ACK-Line - dropped ACK before NACK

Faulty ACK-Line - dropped NACK

- Needed for active receiver transitions after PoR
- Communicate reinit to other side
- For reinit: two step strategy

Implementation - Clock Domains

Domain Crossing

Test of Implementation

Currently incomplete

Test of Implementation

- Startup initialisation and nominal data transfer
- Bit error(s) within one frame
- Burst error within one frame
- Single dropped ACK, single dropped NACK
- Sequence of dropped ACKs, NACKs
- Reinit without reset due to blocked Data or ACK-line
- Reinit with reset

5 BUFG per TX, RX (30% overall)

~ 1 MMCM (10%), 2 PLL (20%)

- Error Model:
 - Mostly due to Radiation
 - More burst- than bit-errors
- Protocol:
 - Modified Go-back-N with CRC-32C
 - Init, reinit phase
 - 5% overhead w. 200 byte frames, <1% w. 1000 bytes
 - Encapsulation of all foreseen errors
- Implementation:
 - Clock domain isolation
 - slim implementation, small footprint

Next Steps

- Complete and perform System Tests
- Check Test-Scenarios for full coverage
- Validation and Verification in accordance to ECSS
- Tests in Hardware

- Book: "Error Control Coding Fundamentals and Applications" Shu Lin et. al.
- "TLK2711-SP 1.6-Gbps to 2.5-Gbps Class V Transceiver". Texas Instruments datasheet, last revised Oct.2014, . see http://www.ti.com/lit/ds/symlink/tlk2711-sp.pdf
- "Using the TLK2711-SP With Minimal Protocol". Texas Instruments: Application Report, last revised Aug.2011, . see http://www.ti.com/lit/an/ sgla001a/sgla001a.pdf
- "Radiation Models and Hard- ware Design" Some, Raphael, presentation in 2002, 2002. see http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/44/W2/02-Some.pdf
- "Single Event Effects and Total Dose Test Results for TI TLK2711 Transceiver" Koga, R.; Yu, P.; George, J., In: Radiation Effects Data Workshop, 2008 IEEE, 2008, S. 69–75
- "Checksum and CRC Data Integrity, Techniques for Aviation. Carnegie Mellon University" Koopman, Philip: Tutorial; May 9, 2012, . see https://users.ece.cmu.edu/~koopman/pubs/KoopmanCRCWebinar9May2012.pdf
- "An experimental evaluation of SpaceFibre resource requirements". Rowlings, M.; Suess, M.: In: SpaceWire Conference (SpaceWire), 2014 International, 2014, S. 1–6

