

Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur

Die VIA Nano-Prozessor Architektur

Dresden, 20.05.2009

Gliederung

- Einführung
- Der Nano
- Modelle
- Architektur Highlights
 - Sicherheitsfunktionen
 - Energiemanagement
 - Cache subsystem
- Struktur
- Intel Atom
- Performance

01 Einführung

- Nano ist komplette Neuentwicklung
- von Centaur Technology entwickelt
- Ziel:
 - Leistungssteigerung zum C7
 - Aber: Strombedarf so gering wie möglich
- Warum?:
 - Wachsender Bedarf an Energie-Effizienz
 - Mobile computing
 - Steigende perfomance Anforderungen (Multimedia)

TU Dresden, 27.05.2009

02 Der NANO in Fakten

- 64 Bit Architektur
- Basiert auf VIA Isaiah Architektur
- 65 nm Technologie
- Out-of-order Issue und Execution
- Pin-Kompatible zu C7
- 64 Kbyte L1-Instruction Cache
- 1 MB L2 Cache
- Spezieller Prefetch-Cache
- 95 Millionen Transistoren
- TDP von 5-25 W

03 Modelle


Processor Brand	Model Number	Speed	VIA V4 FSB	TDP (max)	Process Technology	Idle Power
VIA Nano™	L2100	1.8GHz	800MHz	25 watts	65nm	500mW
VIA Nano™	L2200	1.6GI Iz	800MHz	17 watts	65nm	100mW
VIA Nano™	U2400	1.3+GHz	800MHz	8 watts	65nm	100mW
VIA Nano™	U2350	1.3GHz	800MHz	8 watts	65nm	100mW
VIA Nano™	U2500	1.2GHz	800MHz	6.8 watts	65nm	100mW
VIA Nano™	U2300	1.0GHz	533MHz	5 watts	65nm	100mW

L2100, L2200 (low voltage);

04 Architektur Highlights

- Superskalar und spekulative in-order fetching
 - kann 3 x86 Befehle pro Takt dekodieren
- Out-of-order execution
- Macro- und Micro-fusion
 - Performancesteigerung durch Befehlskombination
- Branch-prediction
 - 8 verschiedene Vorhersagen in 2 Pipelinestufen
- Sicherheitsfunktionen
- Energiemanagement
- Cache-Subsystem

04 Sicherheitsfunktionen

Überblick

- Verfügt über VSM
- Secure execution mode

	AMD Phenom	Intel Core2	Intel Atom	VIA C7	VIA Nano
Secure Hash	Nein	Nein	Nein	Full SHA-1 & SHA-256 5Gb/s Spitze	Full SHA-1 & SHA-256 5Gb/s Spitze
Buffer Overflow	NX Bit	NX Bit	NX Bit	NX Bit	NX Bit
Chipeigene Verschlüsselung	Nein	Nein	Nein	Volle AES Ver-/Entschlüsselung RSA Beschleunigung CBC, CFB-M, AC, CTR Modi 25Gb/s Spitze	Volle AES Ver-/Entschlüsselung RSA Beschleunigung CBC, CFB-M, AC, CTR Modi 25Gb/s Spitze
Zufalls- generierung (RNG)	Nein	Nein	Nein	2 erweiterte Hardware RNG's bis zu 12Mb/s Feeds Output an SHA Engine	2 erweiterte Hardware RNG's bis zu 12Mb/s Feeds Output an SHA Engine

04 Energiemanagement

PowerSaver Technology

- Über P-States beschrieben
 - P-States = Kombination aus Betriebsspannung und Takt-Faktor
- Energiemanagement in 3 Phasen abgewickelt
 - 1. unverzögertes Umschalten auf andere PLL
 - 2. Spannung um kleinstes Delta verändern
 - 3. Wiederholung bis Endpunkt erreicht ist
- Bus und Ausführungseinheiten können währenddessen benutzt werden
- Automatisches Ändern der P-States → basiert auf Temperatur

04 Cache Subsystem

- Getrennter Daten- und Befehlscache
 - 64 kByte
 - 16-way set associative
- L2 Cache mit 1 MB
- L1, L2 sind Exclusive Caches
- speziellen prefetch-cache
- Volatile secure memory
 - Nur im "secure execution"-Modus erreichbar
 - Speicher hat eigenen Adressbereich

TU Dresden, 27.05.2009

Folie 9

04 Cache Subsystem exclusive vs inclusive Cache

exclusive

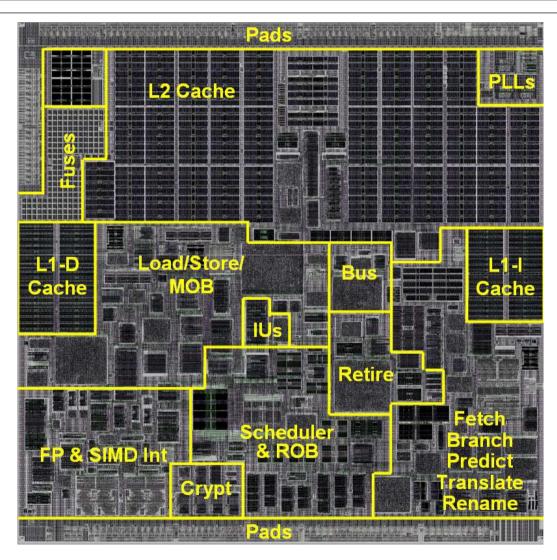
- Datum befindet sich in L1 <u>oder</u> L2
- Mehr Daten können gespeichert werden
- Aber Verwaltung komplizierter
- AMD Athlon

inclusive

- Datum befindet sich in L1 und L2
- Intel Pentium II, III, 4

TU Dresden, 27.05.2009

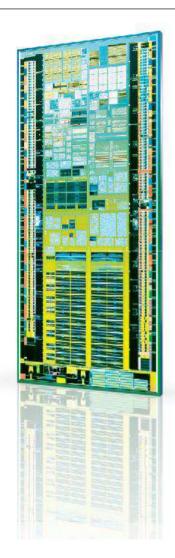
05 Struktur



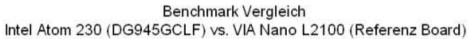
TU Dresden, 27.05.2009

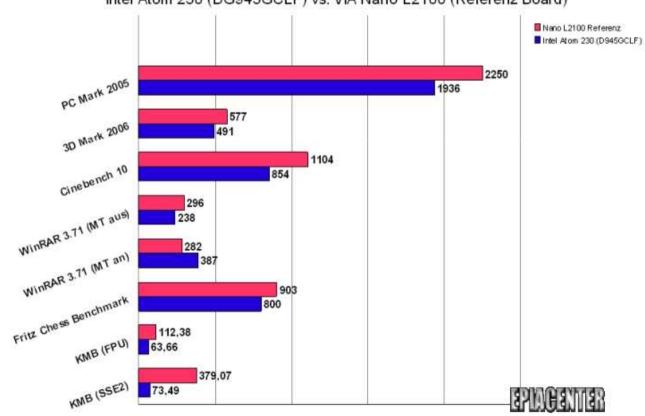
Folie 11

05 Struktur



06 Intel Atom


Merkmale


- In-order Verarbeitung, 2 μOps pro Takt
- Hyperthreading
- 45 nm Technologie
- L1-Cache: 32 kB Instruction / 24 kB Data
- L2-Cache: 512 kB, 8-fach assoziativ

07 Performance

08 aktuelle Produkte

Jetway JNF77-N1GL-LF P 1,0GHz Mini-ITX NANO-CPU

10 Quellen

- C't Magazin (08/2009) Seite 74
- C't Magazin (07/2009) Seite 150
- Isahia Architecture Whitepaper
 - http://www.via.com.tw/en/downloads/whitepapers/processors/WP080124Isaiah-architecture-brief.pdf
- VIA Nano Whitepaper
 - http://www.via.com.tw/en/downloads/whitepapers/processors/WP080529VIA_Nano.pdf
- EpiaCenter
 - http://www.epiacenter.de/modules.php?name=Content&pa=showpage&pid=256
- Zdnet
 - http://www.zdnet.de/bildergalerien_benchmarks_via_nano_schneller_als_intels_atom_story-39002383-39194222-1.htm#sid39194225

TU Dresden, 27.05.2009