Ein Ansatz für die verifikationsgerechte Verhaltensmodellierung für die semi-formale Verifikation von Mixed-Signal-Schaltungen

Martin Freibothe

Überblick

- Verifikationsansätze
- Verifikationsablauf für Mixed-Signal-Schaltungen
- Verifikationsgerechte Verhaltensmodellierung
 - Zeitdiskretisierung
 - Quantisierung
 - Endlicher Automat
- Anwendungsbeispiel
- Zusammenfassung und Ausblick

Martin Freibothe

Verifikationsansätze

- Ziel: Finden von Entwurfsfehlern
- Industrielle Praxis: vorrangig simulationsbasierte Validation
- Verifikation von Analog und Mixed-Signal-Schaltungen: aktueller Gegenstand der Forschung

Martin Freibothe

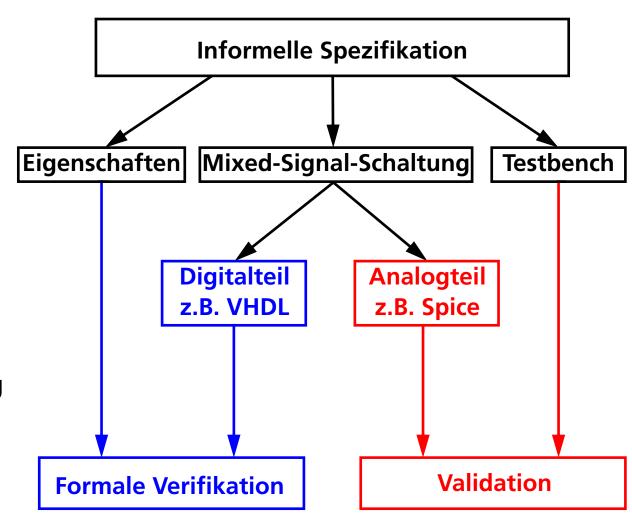
Überprüfung eines digitalen Schaltungsentwurfs

Formale Verifikation

- Äquivalenzvergleich
- Modellüberprüfung, Eigenschaftsprüfung
- Formale Methoden, Korrektheitsnachweis
- Nachweis der Abwesenheit von Entwurfsfehlern

Validation

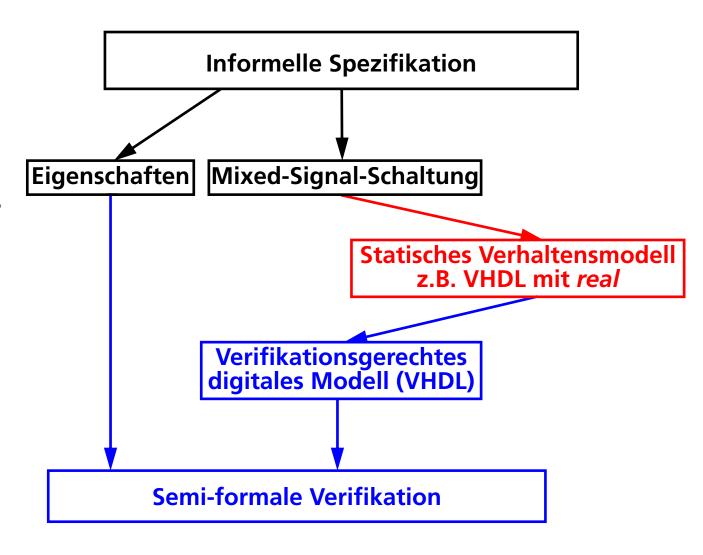
- Simulationsbasiert
- Testbenches
- Größere Schaltungen handhabbar
- Unzureichende funktionale Überdeckung



Verifikationsablauf für Mixed-Signal-Schaltungen (1)

Mixed-Signal-Schaltung

- simulationsbasierteValidation
- Trennung der Analogund Digitalteile
- Zusammenschaltung wird simuliert
- hoher manuellerAufwand
- funktionale Abdeckung unzureichend


Martin Freibothe

Verifikationsablauf für Mixed-Signal-Schaltungen (2)

- Digitales Verhaltensmodell
- Quantisierung über endlichen Intervallen
 - Quantisierungsfehler
 - Überläufe
- → Semi-formaler Ansatz
- Offene Probleme
 - Herleitung des Verhaltensmodells
 - Überprüfung des dynamischen Verhaltens

Martin Freibothe

Digitale Verhaltensmodellierung analoger Komponenten

Ziele

- Modellierung des dynamischen analogen Verhaltens mit Hilfe von endlichen Automaten
- Erstellen verifikationsgerechter Verhaltensmodelle (Implementierung z.B. in VHDL)
- Verwendung etablierter Werkzeuge der digitalen formalen Verifikation zur Entwurfsüberprüfung

Probleme

- analoge Komponenten sind in Form elektrischer Netzwerke gegeben (nichtlineare Algebro-Differentialgleichungssysteme)
- im Allgemeinen gibt es keine analytische Lösung im Vergleich zur Verhaltensbeschreibung digitaler Schaltungen auf der RT-Ebene

Martin Freibothe

Modellierungsablauf (1)

Differentialgleichungssystem

zeit- und wertekontinuierlich Differenzengleichungssystem

zeitdiskret, wertekontinuierlich Differenzengleichungssystem

zeit- und wertediskret Zustandsüberführungsfunktion

> *digitaler* Automat

(Zeit diskretisier ung)

Quantisierung

Kodierung

- Integrationsformeln
- Genauigkeit
- Komplexität

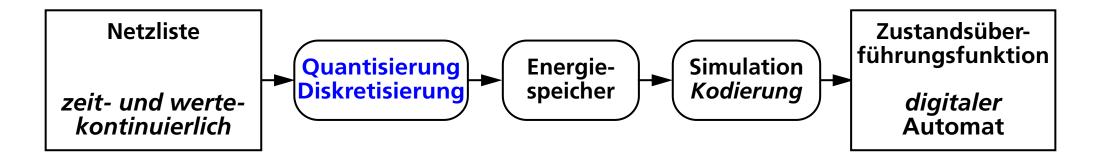
- Auflösung
- Genauigkeit
- Komplexität
- Endliche Wertebereiche
- Berechnung der Wertetabelle
- Komplexität

Martin Freibothe Promotionsverteidigung

Modellierungsablauf (2) simulationsbasiert

Differential-Differenzen-Differenzen-Zustandsübergleichungssystem gleichungssystem gleichungssystem führungsfunktion zeit- und wertezeitdiskret, wertezeit- und wertedigitaler kontinuierlich kontinuierlich diskret **Automat** Zeitdiskretisierung Quantisierung **Kodierung** Schaltungssimulator

- Integrationsformeln
- Genauigkeit
- Komplexität


- Auflösung
- Genauigkeit
- Komplexität
- Endliche Wertebereiche
- Berechnung der Wertetabelle
- Komplexität

Martin Freibothe Promotionsverteidigung

Modellierungsablauf (3) simulationsbasiert

Quantisierung

- Quantisierung der analogen Werte über endlichen Intervallen; Parameter: Auflösung, Intervallgrenzen
- endliche Mengen für Eingabe-, Ausgabe- und Zustandssymbole ightarrow endlicher Automat
- Kompromiß zwischen Genauigkeit und Komplexität des Modells und der anschließenden Verifikation

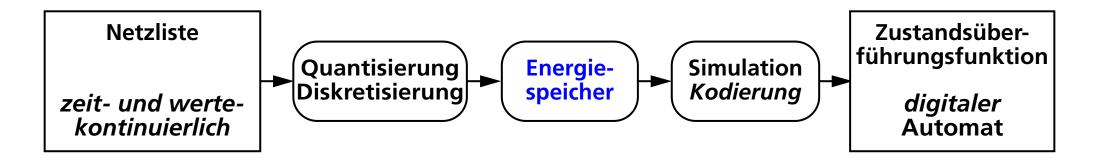
- Zeitdiskretisierung
- Festlegung des Simulationsintervalls [0; t_s]
- Zeitschritt t_s entspricht der Taktperiode des aufgestellten digitalen Automaten (*Ein-Schritt-Automat*)

Martin Freibothe

Quantisierungsparameter und Simulationsintervall

Quantisierung

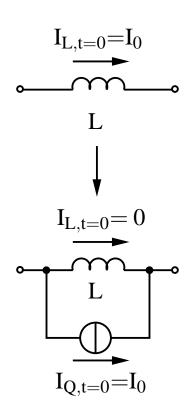
- Genauigkeit des Modells
- Komplexität des Modells
- Komplexität der anschließenden Verifikation
- Auflösung der Quantisierung und Simulationsintervall [0; t_s] müssen geeignet gewählt werden
 - → Neues Quantisierungsintervall muß nach Simulation des Zeitschrittes t_s erreicht werden

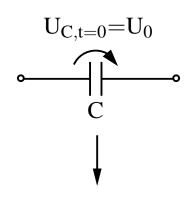

- Endliche Wertebereiche
- endliche Mengen für Eingabe-, Ausgabe- und Zustandssymbole des endlichen Automaten
- Komplexität des Modells
- Abdeckung größerer Wertebereiche mit mehreren
 Modellen »Teile und Herrsche« –

Martin Freibothe Promotionsverteidigung

Modellierungsablauf (4) simulationsbasiert

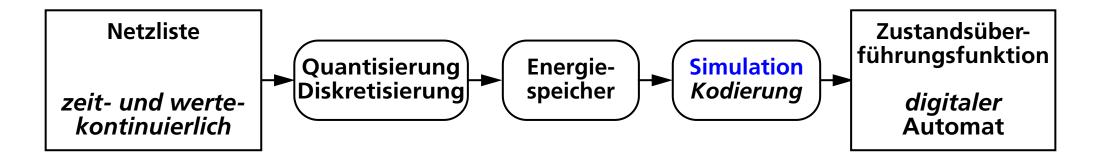
- Energiespeichernde Elemente
- im Allgemeinen durch Kapazitäten und Induktivitäten gegeben
- Komplexität des Ansatzes steigt exponentiell mit der Anzahl der energiespeichernden Elemente, die als Zustandsvariablen des Automaten modelliert werden
- Bestimmung »relevanter« energiespeichernder Elemente
- »relevante« Energiespeicher werden durch Ersatzschaltungen für die Transientensimulation ersetzt


Martin Freibothe Promotionsverteidigung



Anpassungen der Netzliste für Energiespeicher

- »Relevante« energiespeichernde Elemente werden in der Netzliste ersetzt
- Äquivalente Ersetzung in Bezug auf das Klemmverhalten
- Anfangsbedingungen für die Simulation werden mit Hilfe der eingefügten Quellen I_Q und U_O gesetzt



$$U_{C,t=0}=0 \qquad U_{Q,t=0}=U_0$$

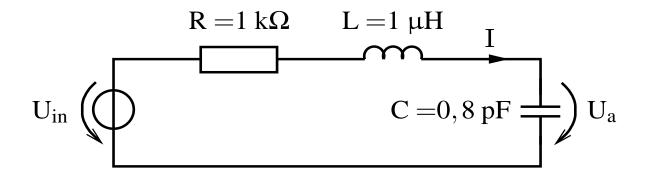
Martin Freibothe

Modellierungsablauf (5) simulationsbasiert

Simulation

- ausschöpfende Simulation bzgl. der Quantisierung
- Rundung der Simulationsergebnisse
- jede mögliche Kombination von Belegungen der Eingänge und Anfangszustände

- Vorteile der Verwendung eines Simulators
- Genauigkeit, Simulationszeit, numerische Stabilität
- üblicherweise in industriellen Entwurfsabläufen verwendet
- analoge Komponenten liegen i. A. als Netzlisten vor


Martin Freibothe

Illustrierendes Beispiel

- RLC-Schaltung
 - Schaltbild

Modellierungsparameter

- Zwei Speichervariablen:
 - Spannung über dem Kondensator U_c = U_a
 - Strom durch die Spule I
- Eingangsvariable U_{in}
- Ausgangsvariable U_a

Martin Freibothe

Aufstellen des Automaten

 Modellierungsparameter für die Beispielschaltung

— Spannungen:

-6,4 V . . . 6,0 V Auflösung: 0,4 V / bit

— Ströme:

-2,0 *mA* . . . 1,875 *mA* Auflösung: 0,125 *mA* / bit

— Repräsentation mit Bitvektoren der Breite 5, Länge des Simulationsintervalls $[0; t_s] = 0.7 ns$

- Zustandsüberführungsfunktion als Wertetabelle
- Transientensimulation der angepaßten Netzliste für jede Kombination der Belegung der Eingänge und Anfangszustände
- Berücksichtigung von technisch nicht sinnvollen Kombinationen
- vollständige Verhaltensbeschreibung bezüglich der gewählten Quantisierung und Diskretisierung

Martin Freibothe

Wertetabelle der Funktionen λ und δ

 Endliche Anzahl von Eingangsfolgen, hier:

$0.0~V \rightarrow$	0,0 V
$0.0~V \rightarrow$	3,2 V
$3,2 V \rightarrow$	0,0 V
3.2 V →	3.2 V

$U_{in}(k)$	U _{in} (k+1)	I _S (<i>k</i>)	U _S (<i>k</i>)	I _S (k+1)	U _a (k+1)
0,0	0,0	-1,250	0,8	-0,750	0,0
0,0	0,0	-1,250	1,2	-1,000	0,4
0,0	0,0	-1,375	2,8	-1,750	1,6
•••		•••		•••	
3,2	3,2	-1,375	2,4	-0,125	1,6

- Bestimmung der Wertetabelle durch Simulation
- Beschreibung des Ein-Schritt-Automaten
 - Ausgabefunktion λ und
 - Zustandsübergangsfunktion δ

Martin Freibothe

Implementierung eines Ein-Schritt-Automaten

- Synthetisierbare Untermenge von VHDL
- Voltage und current mit Hilfe von Bitvektoren implementiert
- Expliziter Takteingang

```
entity rlc is

port (
    -- Takteingang
    clk: in std_ulogic;

    -- Ein- und Ausgangs-
    -- spannung
    U_in: in voltage;
    U_a: out voltage);

end rlc;

Martin Freibothe
```

```
architecture behavior of rlc is
 begin
   p1: process (clk, U_in)
     variable U intern : voltage;
     variable I intern : current;
   begin
    if clk'event and clk = '1' then
      if( U_in
                    = voltage(3.2)) then
       if( I intern = current( 0.001500 ) ) then
        if (U intern = voltage(-2.400000)) then
          I intern := current( 0.001875 );
          U intern := voltage( -0.800000 );
        end if;
       end if;
      end if;
      . . .
   end process;
 end behavior;
Promotionsverteidigung
```


Nachweis formaler Eigenschaften

- Eigenschaft für das Einschwingen der Ausgangsspannung U_a
- Bounded interval model checking
 - endliches Zeitintervall
 - hier: [t; t+14]
- Ressourcen
 - 10 Minuten CPU
 - 750 MB RAM

- Unabhängig vom Anfangszustand sind die Einschwingvorgänge nach 12 Takten abgeklungen
- 12 Taktzyklen des Ein-Schritt-Automaten entsprechen einer Zeit von 8,4 ns

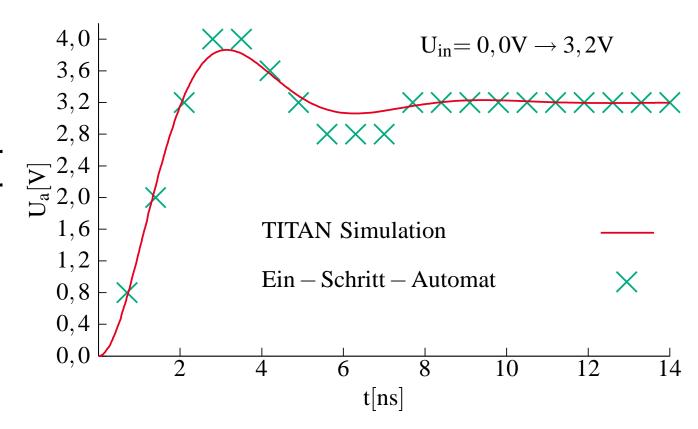

Martin Freibothe

Illustration der Approximationsfehler

- Modell repräsentiert approximiertes Verhalten
 - Diskretisierungsfehler
 - Quantisierungsfehler
- Quantisierungsfehler muß in Eigenschaften berücksichtigt werden

→ Semi-formaler Verifikationsansatz

Martin Freibothe

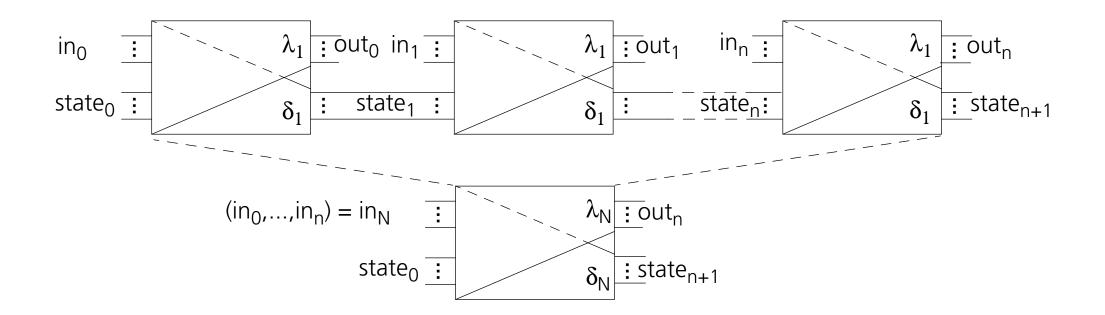
TITAN von Qimonda/Infineon Technologies AG

N-Schritt-Automat

Ziel

- digitales Modell für die Repräsentation des analogen Verhaltens in Bezug auf die digitale Umgebung
- digitales Modell ersetzt in der Zusammenschaltung das analoge Verhaltensmodell
 - Digitales Verhaltensmodell der zugrundeliegenden Mixed-Signal-Schaltung

Ansatz


- weiterer Abstraktionsschritt ausgehend von einem Ein-Schritt-Automaten
- Aufstellen eines N-Schritt-Automaten
- Taktperiode P ist ganzzahliges Vielfaches der Länge des Simulationsintervalls t_s mit $P = n \cdot t_s$

Martin Freibothe

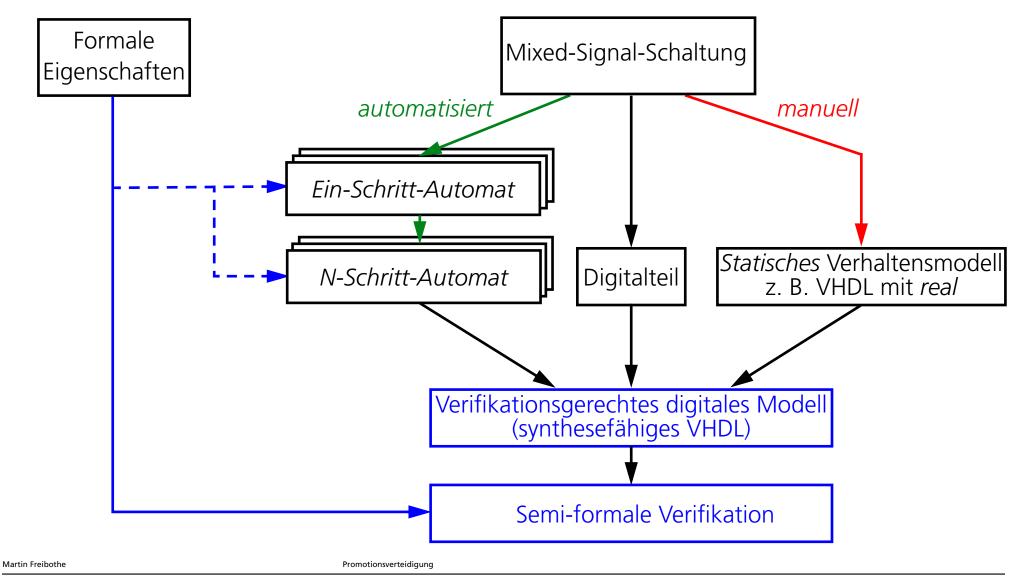
Aufstellen eines N-Schritt-Automaten

- N-Schritt-Automat
 - Ausgabefunktion: λ_N
 - Zustandsüber- führungsfunktion: δ_N
- out_n = λ_1 (δ_1 (... δ_1 (δ_1 (state₀, in₀), in₁),..., in_{n-1}), in_n) = λ_N (state₀, (in₀,...,in_n))
- $state_{n+1} = \delta_1 (... \delta_1 (\delta_1 (state_0, in_0), in_1),..., in_n)$ = $\delta_N (state_0, (in_0,...,in_n))$

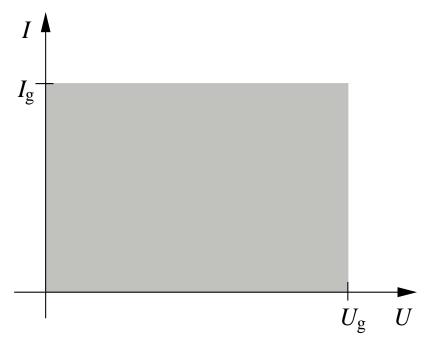
Martin Freibothe

Verwendung der digitalen Verhaltensmodelle

- Ein-Schritt-Automat
- Nachweis praktisch relevanter Eigenschaften über das dynamische Verhalten analoger Komponenten
- Komposition von Ein-Schritt-Automaten
- weitere Abstraktion durch das Aufstellen von N-Schritt-Automaten


- N-Schritt-Automat
- Zusammenschaltung einer analogen Komponente mit der digitalen Umgebung
- Komposition verschiedener N-Schritt-Automaten

Martin Freibothe


Verbesserter Verifikationsablauf

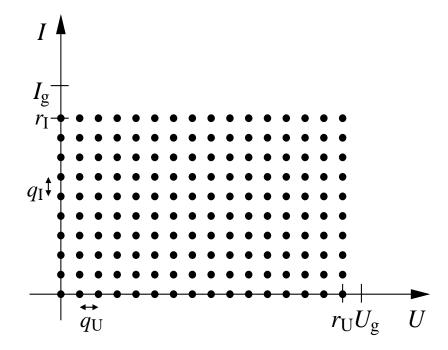
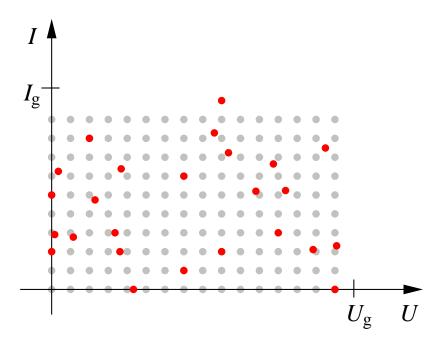


Illustration der Gültigkeit der Verhaltensmodelle

- **Kontinuierliches Verhaltensmodell:** (elektrisches Netzwerk)

Digitales Verhaltensmodell: (endlicher Automat)



Martin Freibothe

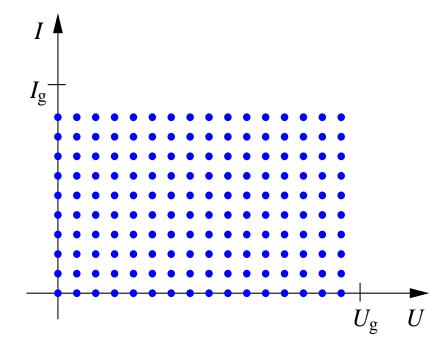
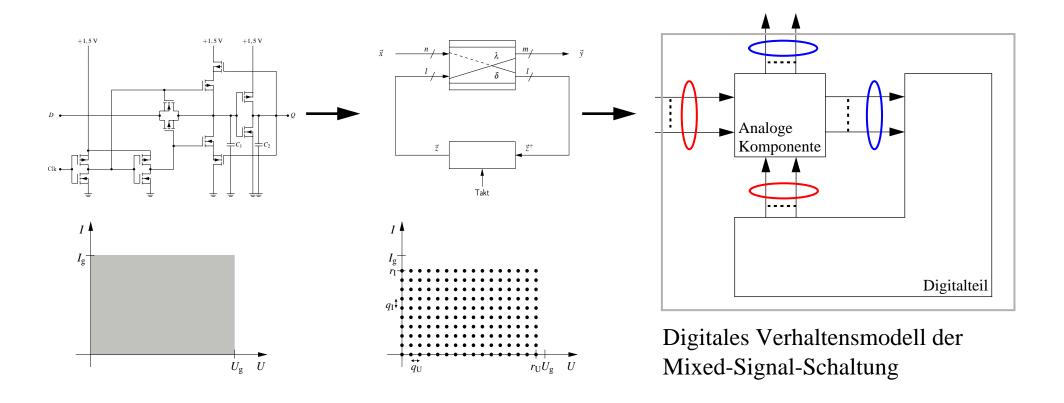


Illustration der funktionalen Abdeckung

 Kontinuierliches Verhaltensmodell: (elektrisches Netzwerk)

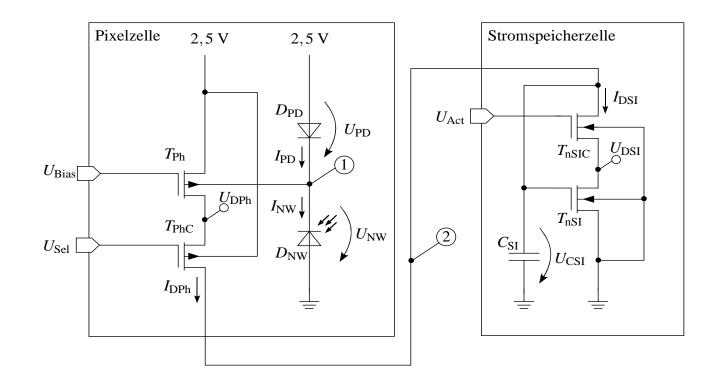

 Digitales Verhaltensmodell: (endlicher Automat)

Martin Freibothe

Einbetten einer analogen Komponente

Verwendung des digitalen Verhaltensmodells:

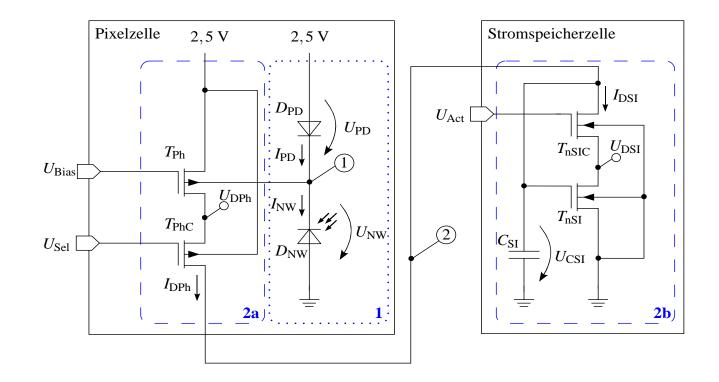
- Konstanten für Grenzen der gültigen Wertebereiche
- Einschränken der Eingangsbelegungen
 - Überprüfen der Ausgangsbelegungen


Martin Freibothe

Anwendungsbeispiel: Pixelzelle (1)

- Pixelzelle mit Stromspeicherzelle
- Zwei Modi:
 - integrierend
 - logarithmierend
- Eingangsvariable:
 - Photostrom I_{NW}
- Ausgangsvariable:
 - Spannung über C_{SI}

Martin Freibothe



Anwendungsbeispiel: Pixelzelle (2)

- Partitionierung
- Knoten ① wird als rückwirkungsfrei angenommen

- Zwei Ein-Schritt-Automaten
 - Partition 1
 - Partition 2(ab)

Martin Freibothe

Anwendungsbeispiel: Pixelzelle (3)

Überprüfte Eigenschaften

- Überschwingen: Nachweis, daß die Ausgangsspannung innerhalb der angegebenen Intervalle liegt
- nachgeschaltete digitale Komponenten im Signalpfad übernehmen richtige Werte
- Ausgangsspannung entspricht der Spezifikation

Martin Freibothe Promotionsverteidigung

Zusammenfassung

- Anwendung formaler Verifikationsmethoden für eine größere Klasse von Mixed-Signal-Schaltungen
- Verwendung eines Simulators zur numerischen Lösung der Verhaltensbeschreibung in Form von DGLs
- Nachweis von praxisrelevanten Eigenschaften über das dynamische Zeitverhalten analoger Komponenten
- Bereitstellung von digitalen Verhaltensmodellen analoger Komponenten, die kontinuierliche Modelle in der Zusammenschaltung ersetzen
- Exponentieller Aufwand der Modellierung in der Anzahl der Eingangs- und Zustandsvariablen sowie der Anzahl der Quantisierungsstufen
- Verifikationsverfahren ist aufgrund der Modellierung trotz der Anwendung formaler Techniken semi-formal

Martin Freibothe

Offene Probleme und Ausblick

- Beschreibung der Klasse von analogen Komponenten und Mixed-Signal-Schaltungen für die das Verfahren anwendbar ist
- Optimierung der Parameter für die Anwendung der Modellierung (Zeitdiskretisierung, Quantisierung)
- Verfahren/Ansätze für die Bestimmung »relevanter« energiespeichernder Elemente
- Modellierung basiert auf Nominalsimulationen,
 Parameterschwankungen werden nicht berücksichtigt
- Betrachtung des Verhaltens im Zeitbereich Verhalten im Frequenzbereich (Frequenzgang) wird nicht überprüft
- Anwendung des Verfahrens ausgehend von weiteren Verhaltensbeschreibungen wie z.B. VHDL-AMS

Martin Freibothe Promotionsverteidigung

