

ASIC-SYNTHESE DER SHAP-MIKROARCHITEKTUR

Vortrag zum großen Beleg

Andrej Olunczek
Andrej.Olunczek@mailbox.tu-dresden.de

Dresden, 01.10.2008

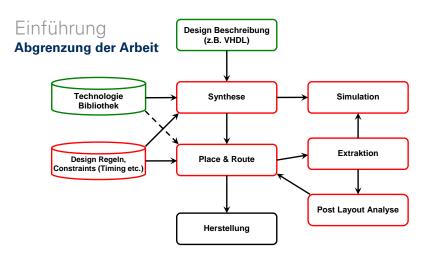
Gliederung

Einführung

Vergleich anderer Prozessoren

Realisierung

Zusammenfassung



Einführung

Aufgabenstellung

- Literaturstudium zu Flächenbedarf, Taktfrequenz und Leistungsaufnahme anderer eingebetteter Prozessoren
- Analyses des SHAP-VHDL-Designs und ggf. Entwurf/Generierung geeigneter Ersatzmodule mit Hilfe der Design-Tools
- Synthese des modifizierten Designs. Optimierung auf geringe Leistungsaufnahme und hohe Taktrate.
- Bestimmung der Kenndaten Chipfläche, erreichbare Taktfrequenz und Leistungsaufnahme in Abhänigkeit der Design-Parameter
- Zusammenfassung und Dokumentation der Ergebnisse.

Einführung

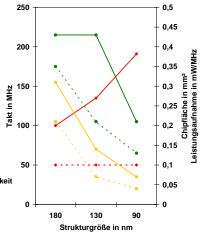
Motivation

- Vergleich zu anderen eingebetteten Prozessoren
- Vergleich zu den FPGA-Implementierungen
- Abschätzung der Leistungsfähigkeit der Architektur

Vergleich anderer Prozessoren

Vergleich einiger Java-fähiger Prozessoren

CPU	aJile aj-100	Fujitsu MB86799	ARM926EJ-S
Architektur	32-bit Java Proz.	32-bit Java Proz.	32-bit RISC Proz.
	IEEE-754 FPU	IEEE-754 FPU	IEEE-754 FPU Coproz.
	nativ Java	PicoJava-II	Java-Coproz. (Jazelle)
	32K Data Cache	8K Data Cache	8K Data Cache
	16K Microcode	8K Instr. Cache	8K Instr. Cache
Technologie	$0.25 \mu m$	$0.25 \mu m$	0.13μm
Takt	100 MHz	66 MHz	200 MHz
Benchmark	2,75 CM/MHz	9,4 CM/MHz	5 CM/MHz
emb. CM 3.0			
Leistungsaufn.	2,5 mW/Mhz	5,4 mW/Mhz	0,45 mW/Mhz
Chipfläche			2.4 <i>mm</i> ²



Vergleich anderer Prozessoren

Vergleich Eckdaten in Abhänigkeit der Optimierung

Beispiel ARM Cortex-M3 (nur CM3Core)

- -- Takt optimiert nach Geschwindigkeit
- Takt optimiert nach Fläche
- -- Chipfläche optimiert nach Geschwindigkeit
- • Chipfläche optimiert nach Fläche
- --- Leistungsaufnahme optimiert nach Geschwindigkeit
- -- Leistungsaufnahme optimiert nach Fläche

Vergleich anderer Prozessoren

Vergleich Cachegrößen

Beispiel ARM9

CPU	Cache	Techn.	Takt	Leistungsaufn.	Chipfläche
ARM920T	2 * 16K	0.18 μm	200 MHz	0,8 mW/MHz	11.8 <i>mm</i> ²
ARM922T	2 * 8K	0.18 μm	200 MHz	0,8 mW/MHz	8.1 <i>mm</i> ²
ARM9	ohne	0.18μm	200 MHz	0,8 mW/MHz	4.4mm ²
	(theoret.)				
ARM920T	2 * 16K	0.13μm	250 MHz	0,25 mW/MHz	4.7 <i>mm</i> ²
ARM922T	2 * 8K	0.13μm	250 MHz	0,25 mW/MHz	3.2 <i>mm</i> ²
ARM9	ohne	0.13μm	250 MHz	0,25 mW/MHz	1.7 <i>mm</i> ²
	(theoret.)				

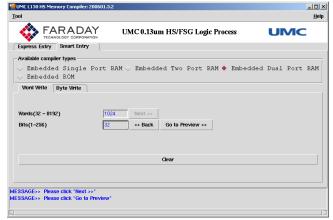
Vergleich anderer Prozessoren

Zusammenfassend

- geringere Strukturgröße ⇒ geringere Fläche und Leistungsaufnahme, höherer Takt
- Optimierung nach Geschwindigkeit ⇒ höhere Fläche, Leistungsaufnahme und Takt
- Optimierung nach Fläche ⇒ geringere Fläche, Leistungsaufnahme und Takt
- Cachegröße hat großen Einfluss auf die Chipfläche

Technologie

- 0.13μm von UMC
- für Logik, 8 Metallisierungsebenen
- fsc0h_d_sc Faraday Standardzellenbibliothek
- Tools: 'Memaker' & 'Synopsys Design Compiler' & 'Cadence SOC'



Arbeitsschritte

- Analyse des Codes und Generierung Ersatzmodule ⇒ Erstellung von RAM-Makros ⇒ Optimierung der Makros nach gegebenen Punkten
- Hinzufügen der Padzellen, Synthese der Daten ⇒ Optimierung durch geeignete Bedingungen(Timing-constraints etc.) einstellen
- Place & Route in iterativen Schritten ⇒ Steuerung der Bedingungen, Lage der Makros und Padzellen, etc. durch Skripte
- Nach jeden Schritt Überprüfung der Einhaltung der Bedingung & Test durch Simulation

Memaker

Memaker

Memaker Details

• Auflistung möglicher Konfigurationen

FSC0H_D_SJ (Sync. High Density DPRAM)							
Column Mux (Aspect Ratio) Gate Count BC,TC,WC loading=0.01pF ckslew=0.016ns		DC Power (uA)	AC Power (mA/MHz)	Area (mm_sq)	Width (um)	Height (um)	
4 (1024x32x1)	65040	1.445,2.125,3.556	59.738	0.020	0.266	385.200	691.600
8 (1024x32x1)	62138	1.092,1.602,2.670	40.275	0.021	0.255	662.800	384.000
16 (1024x32x1)	71392	0.957,1.407,2.359	31.228	0.028	0.292	1202.400	243.200

Memaker Details

- Auflistung möglicher Konfigurationen
- Auswahl guter Werte für eine hohe Taktrate

FSC0H_D_SJ (Sync. High Density DPRAM)								
Column Mux (Aspect Ratio) Gate Count BC,TC,WC loading=0.01pF ckslew=0.016ns		DC Power (uA)	AC Power (mA/MHz)	Area (mm_sq)	Width (um)	Height (um)		
4 (1024x32x1)	65040	1.445,2.125,3.556	59.738	0.020	0.266	385.200	691.600	
8 (1024x32x1)	62138	1.092,1.602,2.670	40.275	0.021	0.255	662.800	384.000	
16 (1024x32x1)	71392	0.957,1.407,2.359	31.228	0.028	0.292	1202.400	243.200	

Memaker Details

- Auflistung möglicher Konfigurationen
- Auswahl guter Werte für eine hohe Taktrate
- Auswahl guter Werte für eine geringe Leistungsaufnahme

$FSCOH_D_SJ$ (Sync. High Density DPRAM)									
Column Mux (Aspect Ratio)	Gate Count	Taa(ns) BC,TC,WC loading=0.01pF ckslew=0.016ns	DC Power (uA)	AC Power (mA/MHz)	Area (mm_sq)	Width (um)	Height (um)		
4 (1024x32x1)	65040	1.445,2.125,3.556	59.738	0.020	0.266	385.200	691.600		
8 (1024x32x1)	62138	1.092,1.602,2.670	40.275	0.021	0.255	662.800	384.000		
16 (1024x32x1)	71392	0.957,1.407,2.359	31.228	0.028	0.292	1202.400	243.200		

Memaker Details

- Auflistung möglicher Konfigurationen
- Auswahl guter Werte für eine hohe Taktrate
- Auswahl guter Werte f
 ür eine geringe Leistungsaufnahme
- Festlegung auf eine Konfiguration für das zu nutzende RAM-Makro

FSC0H_D_SJ (Sync. High Density DPRAM)									
Column Mux (Aspect Ratio)	Gate Count	Taa(ns) BC,TC,WC loading=0.01pF ckslew=0.016ns	DC Power (uA)	AC Power (mA/MHz)	Area (mm_sq)	Width (um)	Height (um)		
4 (1024x32x1)	65040	1.445,2.125,3.556	59.738	0.020	0.266	385.200	691.600		
8 (1024x32x1)	62138	1.092,1.602,2.670	40.275	0.021	0.255	662.800	384.000		
16 (1024x32x1)	71392	0.957,1.407,2.359	31.228	0.028	0.292	1202.400	243.200		

benötigte Speicher

Speicher	Taa(TC)	aa(TC) DC Power AC Power		Area
Stack	2.230 ns	$65.529 \mu A$	0.025 mA/MHz	0.453 <i>mm</i> ²
Method Cache	1.291 ns	26.813 <i>μA</i>	0.019 mA/MHz	0.159 <i>mm</i> ²
Garbage Collector	0.995 ns	$12.451 \mu A$	0.010 mA/MHz	0.052 <i>mm</i> ²
Microtext	1.484 ns	$4.529\mu A$	0.004 mA/MHz	0.033 <i>mm</i> ²
Summe	2.230 ns	109.322 <i>μA</i>	0.058 mA/MHz	0.697 <i>mm</i> ²

Zusammenfassung

- Kompromiss zwischen hoher Taktrate und niedriger Leistungsaufnahme finden
- gute Optimierungsmöglichkeiten schon bei der Generierung der RAM-Makros vorhanden
- Anpassung der RAM-Makros an die funktionalen Besonderheiten der FPGA-Implementierung
- Noch viel Arbeit im Bereich der Synthese und des Place & Route