
ABLEITUNG ZUSÄTZLICHER STEUERGRÖSSEN FÜR DIE STRAHLFORMUNG IN EINEM LASER-SCANNER IM ECHTZEITBETRIEB

Studienarbeit

Patrick Schöps

Dresden, 09.02.2017

Überblick

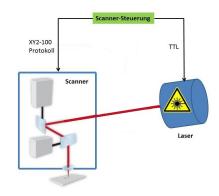
Motivation

Analyse

Entwurf und Implementierung

Test

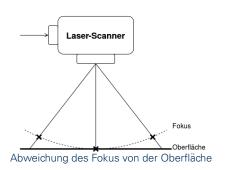
Fazit und Ausblick

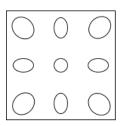


01 Motivation

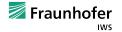
Ausgangssituation

- Werkstoff- und Strahlforschung
- Scanner:
 - Galvanometer
 - Ablenkung in X/Y-Richtung

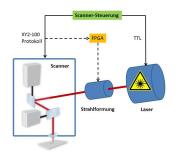




01 Motivation


Nebeneffekte von optischen Projektionsverfahren

Verzerrung im Außenbereich



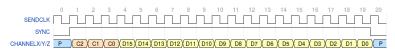
01 Motivation

Lösungsansatz

- weitere Einheit zur Strahlformung
- zusätzliche Steuergröße
- Loaikteil des ZYBO:
 - Überwachung der Ansteuerung des Laser-Scanners
 - Ableiten und Ausgeben der Steuergröße als Analogpegel
 - Echtzeitzusicherung
- ARM-Prozessor:
 - Nutzerinterface
 - Änderung der Ausgabepegelfunktion

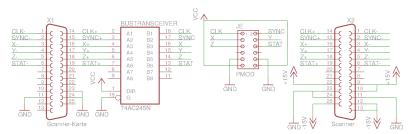
Laser-Scanner

- USC-2 von SCAPS GmbH
- Steuersignale f
 ür Laser und Scanner
- programmierbar über USB und Ethernet
- Stand-Alone-Modus:
 - interner Flash-Speicher für Jobs
 - Laden und Ausführen von Jobs über Flash Control Interface mittels serieller Schnittstelle möglich



Scanner-Platine USC-2

XY2-100-Protokoll


- synchrones, differenzielles und digitales Interface
- differenzielle Signalpaare für Sendetakt, Synchronisationssignal, zwei oder drei Datenkanäle und einen Rückkanal
- Positionsdaten in Exzesscode

TU Dresden, 09.02.2017 Studienarbeit Folie 7 von 23

Pegelanpassung

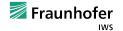
Herunterpegeln der positiven Signale auf 3.3V mit Hilfe eines Bustransceivers

Digital Analog Konverter

- PmodDA3 von Digilent
- 16-Bit-DAC
- SPI-ähnliches Protokoll:
 - 50 MHz Sendetakt
 - low-aktives Chip-Select
 - Datenkanal (16-Bit-Stream)
 - low-aktives LDAC

Binär		Analog
X"0000"	\longrightarrow	0 V
X"8000"	\longrightarrow	$(1/2) \times V_{ref}$
X"FFFF"	\longrightarrow	(65535/65536)xV _{ref}

PmodDA3


ZYBO - Hardware

- ZYnq BOard von Digilent
- All Programmable System-on-Chip Architektur:
 - Dual-Core ARM Cortex-A9 Prozessor
 - FPGA-Logik (7er-Serie)

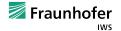
ZYnq BOard

ZYBO - Hardware

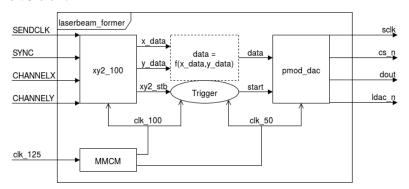
- ARM Cortex-A9:
 - 650 MHz Takt
 - 512 MB DDR3 Speicher
 - Ethernet, USB 2.0, SDIO
 - SPI, UART, CAN, I²C

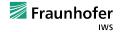
- Artix-7 FPGA:4400 Lo
 - 4400 Logikeinheiten
 - 240 kB BRAM
 - zwei Taktmanager
 - 80 DSP-Einheiten

- weitere Komponenten:
 - Onboard-JTAG-Programmierer und UART-zu-USB-Konverter
 - GPIO (Taster, Schalter, Buttons und LED)
 - sechs PMOD-Verbindungen



ZYBO - Software

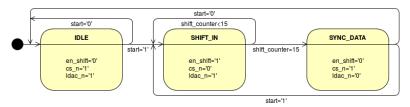

- 1. Entwurf eines Hardware-Design in Vivado
- 2. Cross-Compilierung eines BOOT-Images (FSBL + uboot)
- 3. Cross-Compilierung des Linux-Kernel und des Device-Baums
- 4. Grundinstallation von Debian in Chroot (change root)
- 5. Transfer des Systems auf eine SD-Karte
- 6. Installation des Contiguous-Memory-Allocation-Treibers in Debian



03 Entwurf und Implementierung

Übersicht

03 Entwurf und Implementierung xy2_100


- interpretiert XY2-100-Protokoll
- Ausgabe empfangener Koordinaten
- Strobe-Signal bei Aktualisierung einer Koordinate

TU Dresden, 09.02.2017 Studienarbeit Folie 14 von 23

03 Entwurf und Implementierung pmod_dac

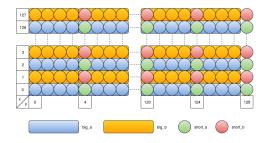
- Zustandsautomat
- Übertragung des Ausgabepegel an den DAC
- durch Start-Signal ausgelöst

03 Entwurf und Implementierung

laserbeam former

- Instanziierung von xy2_100 und pmod_dac
- Trigger-Synchronisation
- Berechnung des Ausgabewertes in Abhängigkeit der eingelesenen Koordinaten
- als IP Core im Hardware-Design eingebunden

TU Dresden, 09.02.2017 Studienarbeit Folie 16 von 23



03 Entwurf und Implementierung

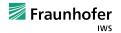
Speicherorganisation

- vorberechnete Werte im BRAM
- bilineare Interpolation mit 128×129 Stützstellen
- vier BRAM-Instanzen
- 25% Redundanz

03 Entwurf und Implementierung Speicherzugriff

- Dual-Port-BRAM
- Port A: AXI-BRAM-Controller
- Port B: laserbeam_former

	lesend	ORTA schreibend	PO lesend	RTB schreibend	virtuelle Adresse	Adress- bereich
big_a big_b	2 ¹¹ × 32 Bit				0x43c1_0000 0x43c1_2000	8K
short_a short_b	2 ⁹	× 32 Bit	2 ¹¹ × 8 Bit	2 ⁹ × 32 Bit	0x43c1_4000 0x43c1_5000	2K

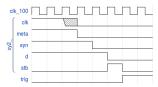

03 Entwurf und Implementierung

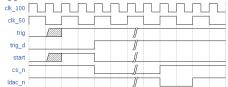
Nutzerinterface

- ipython3-notebook
- Python-HTTP-Server auf dem ZYBO
- graphische Oberfläche
- Ausführen von Python-Scripts möglich
- Paket axi mit Methoden initial(), plot(), read() und write()

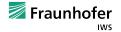
TU Dresden, 09.02.2017 Studienarbeit Folie 19 von 23

04 Test Funktion

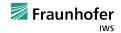



04 Test

Latenz


XY2-100: 30-40 ns

Trigger und DAC: 360-370 ns



05 Fazit und Ausblick

- System mit garantierter Latenz von 390-410 ns im Echtzeitbetrieb nutzbar
- Pegelfunktion aus Prozessor heraus durch Nutzer definierbar
- Verbesserungen:
 - Auflösung der Pegelwerte auf 16 Bit erhöhen
 - weitere Steuergrößen ableiten
 - vollständige Übernahme der Steuerung bei Wahrung der Echtzeitfähigkeit in Kombination mit WebAPI

TU Dresden, 09.02.2017 Studienarbeit Folie 22 von 23

Literatur

• SCAPS: USC-2. Website: http://www.scaps.com/index.php?id=26

• PYNQ-Projekt. Website: http://www.pynq.io

• Digilent: PmodDA3 und ZYBO Reference Manual

Xilinx: User und Product Guides