

Verteidigung Studienarbeit

Entwurf und Implementierung eines statischen Backbones für die Kommunikation mit dynamischen Nutzerpartitionen auf einem Multi-FPGA-Board

Albert Schulz

Dresden, 20.10.2016

Gliederung

- 1. Aufgabenstellung
- 2. Zielarchitektur
- 3. Grundlage des Entwurfs
- 4. Entwurf und Implementierung
- 5. Auswertung
- 6. Zusammenfassung

1. Aufgabenstellung

- große FPGAs → Optimale Auslastung durch mehrere Nutzerdesigns pro FPGA
- mehrere große FPGAs auf Multi-FPGA-Boards
- Kommunikation zwischen Host und Nutzerdesigns nötig

- 1. Aufgabenstellung
- Wesentliche Punkte der Aufgabenstellung:
 - Datenübertragung zwischen Host und Partitionen über gemeinsamen Bus
 - Entwurf eines paketbasierten Protokolls
 - Möglichkeit zur latenzarme Übermittlung von Interrupt- und Statusinformationen
 - generisch mehrere Nutzerpartitionen adressierbar

2. Zielarchitektur

- DNK7 F5 PCIe-Board mit 5 Kintex-7 FPGAs
 - 4x gFPGA: "User FPGAs"
 - 1x dFPGA: "Dataflow Manager"
- Ring-Verbindung der FPGAs über 46 GPIO-Pins
- PCIe-Interface zu Host-Rechner (mittels zusätzlichen pFPGA)
- FPGAs durch Chip-ID (3 Bit) identifizierbar

2. Zielarchitektur

- 3. Grundlage des Entwurfs
- systolische Datenübertragung über Ringbus
 - Flusskontrolle zwischen benachbarten Chips über Go-Signal
 - Keine Sicherung der Datenintegrität (Annahme eines störungsfreien Kanals)
- IP-Core für Host-Kommunikation per DMA

3. Grundlage des Entwurfs

4. Entwurf und Implementierung - Struktur

- 2 getrennte Busse:
 - 32-Bit Datenbus (hohe Datenrate)
 - 8-Bit Kontrollbus (geringe Verzögerung)

4. Entwurf und Implementierung - Struktur

• Systemstruktur auf Netzwerkschicht

- 4. Entwurf und Implementierung Flusskontrolle
- "Credit-based-Flow-Control" zwischen dFPGA und Nutzerdesigns

4. Entwurf und Implementierung - Flusskontrolle

- Trigger für Senden von Credit-Paket:
 - nach Lesen von N/2 Worten aus Empfangspuffer (N=Puffergröße)
 - max. Creditanzahl von 255 erreicht
 - → geringere, gleichmäßige Auslastung des Busses

- 4. Entwurf und Implementierung Adressierung
- Identifikation der Nutzerdesigns über 8-bit Adresse:
 - 3-Bit Chip-ID
 - 5-Bit ID für Partition auf dem Chip
- Adressierung
 - Downstream: nur Zieladresse
 - Upstream: Ziel- & Quelladresse

4. Entwurf und Implementierung - Paketformat

- Paketformat für Datenbus:
 - Sentinel zur Synchronisation
 - Typen: Nutzdaten (RAM, Konfiguration)
 - Datenlänge zwischen 0 und 4.095 Worte

4. Entwurf und Implementierung - Paketformat

- Paketformat für Kontrollbus:
 - Typen: Credits, Status, Reset
 - Daten abhängig vom Typ

Pakettyp	Datenformat	Funktion
0x00	unsigned byte	Credits
0x01	-	Reset
0x02	4-Byte-Wort (Big Endian)	Status

4. Entwurf und Implementierung - Komponenten

- Datenbus Switch:
 - Verbindung zwischen Partitionen und Sicherungsschicht

4. Entwurf und Implementierung - Komponenten

Kontrollbus Switch

- 4. Entwurf und Implementierung Komponenten
- Bus-Arbiter
 - 3:1 Gewichtung der Weiterleitung für faire Buszuteilung
 - Arbitrierung auf Paketbasis
 - gleiche Datenrate pro Kanal bei gleicher Paketgröße

5. Auswertung - Verzögerungen

Status-Paket Verzögerung dFPGA Statuswort: Arbitrierung Latenz [RX] RX Latenz [Arbitrierung & TX] &TX Ring On-Board Status Ring Input Latenz [Ring Output] Output senden & Latenz [Zurücksenden] aFPGA 1 empfangen: Latenz [Weiterleiten] Echo Nutzerdesign ~92 Taktzyklen qFPGA 0 ¥ TX & TX & RX RX Arbitrierung Arbitrierung (~612ns, 150 MHz) Rina Rina Latenz [Ring Input] **Ring Input Ring Input** Output Output unverändert unter gFPGA 3 gFPGA 2 Volllast TX & TX & RX RX Arbitrierung Arbitrierung Ring Ring Ring Input Ring Input Output Output

- 5. Auswertung Verzögerungen
- Verzögerung Nutzdaten (hin- & rücksenden):
 - Host <> Nutzerdesign: ~410µs
 - dFPGA <> Nutzerdesign: ~80 Taktzyklen (~500ns bei 150 MHz)

- 5. Auswertung Datenrate (dFPGA 1 Nutzerdesign)
- Max. Datenrate bei 150 MHz: 600 MB/s
- Datenrate für 1 Down- & Upstream-Kanal (On-Board):

5. Auswertung - Datenrate (dFPGA - 1 Nutzerdesign)

- limitiert durch Flusskontrolle, Protokoll- und Arbitrierungsoverhead
- Flusskontrolle begrenzt bis Puffergröße: 128 Worte
 - 561,29 MB/s (93,5%)
- Maximum:
 - 592,05 MB/s (98,6%) ab 2.048 Worte

- 5. Auswertung Datenrate (dFPGA 8 Nutzerdesigns)
- Datenrate für 8x Down- & Upstream-Kanäle (On-Board)

5. Auswertung - Datenrate (dFPGA - 8 Nutzerdesigns)

- Geringere Gesamtdatenrate aufgrund kleiner Pakete
- Maximum: 573,69 MB/s (95,6%) ab Puffergröße von 8.192 Worten
- gleiche, faire Datenrate pro Kanal
- Puffergröße von 1.024 Worten als Kompromiss zwischen Datenrate und Ressourcenverbrauch

- 5. Auswertung Datenrate (Host 8 Nutzerdesigns)
- Datenrate für 8 Down- & Upstream-Kanäle zwischen Host & Nutzerdesigns
 - Anstieg ø Datenrate bis 16 KiB Puffer, danach kein weiterer Einfluss messbar
 - ø 30 MB/s, max. 120,9 MB/s, min. 9 MB/s

5. Auswertung - Ressourcenverbrauch

Verfügbare Ressourcen				
10	400/500			
BUFG	32			
ММСМ	10			
PLL	10			
LUT	203.800			
LUTRAM	64.000			
FF	407.600			
BRAM	445			

20.10.2016

5. Auswertung - Ressourcenverbrauch

Ressource	Verfügbar	gFPGA			
		2	4	8	
LUT	203.800	778	1.273	1.969	
		0,38%	0,62%	0,97%	
LUTRAM	64.000	32	32	32	
		0,05%	0,05%	0,05%	
Flip-Flops	407.600	751	1.073	1.529	
		0,18%	0,26%	0,38%	
Block-RAM	445	4	8	16	
		0,9%	1,8 %	3,6%	

- 5. Auswertung Ressourcenverbrauch
- ausreichend Logik- und Speicherressourcen f
 ür 2-8 Nutzerdesigns oder Erweiterung des Backbones
- 8 MMCM für Custom-Takte zuteilbar

6. Zusammenfassung

- funktionsf\u00e4hige & praktisch getestete VHDL-Implementierung des Backbones
 - geringe Verzögerung auf dem Kontrollbus
- max. Taktfrequenz: 150 bzw. 171,4 MHz
- Datenrate:
 - Flaschenhals: Host-dFPGA-Kanal
 - On-Board Optimierungen: Pipelining zum Verdecken von Arbitrierungsoverhead, Mindest-Paketgröße, Taktfrequenz erhöhen
- ausreichend Platz auf FPGAs für mehrere Designs oder Erweiterung des Backbones, z.B.
 - Zugriff auf Speicher
 - ICAP Zugriff für dynamische Rekonfiguration

Quellen

• [1] <u>http://www.dinigroup.com/product/data/</u> <u>DNK7_F5PCIe/files/</u> <u>Hardware_Manual_DNK7_F5_PCIe_REV4.pdf</u>

Anhang

Anhang - Abwägung getrennter Daten- & Kontrollbus

- Vorteil: 25% höhere max. Datenrate (40-Bit Bus)
- Nachteil: höhere Design-Komplexität
 - Multiplexen von Daten- und Kontrollpaketen
 - höhere Priorität für Kontrollpakete, um niedrige Latenz zu gewährleisten

Anhang - Ressourcenverbrauch

Ressource	Verfügbar	dFPGA			gFPGA		
		2	4	8	2	4	8
LUT	203.800	5.174	9.024	17.325	778	1.273	1.969
		2,54%	4,43%	8,5%	0,38%	0,62%	0,97%
LUTRAM	64.000	80	80	80	32	32	32
		0,13%	0,13%	0,13%	0,05%	0,05%	0,05%
Flip-Flops	407.600	5.490	9.203	16.584	751	1.073	1.529
		1,35%	2,26%	4,01%	0,18%	0,26%	0,38%
Block-RAM	445	35	69	133	4	8	16
		7,88%	15,51%	29,89%	0,9%	1,8 %	3,6%

Tabelle 4.6: Verbrauch ausgewählter Ressourcen für 2, 4 und 8 Partitionen pro gFPGA