

TECHNISCHE

Professur Laser- und Oberflächentechnik

Potenziale von MELATO-Werkzeugen zum Heißpressen

Dr.-Ing. Hanno Kötter

Professur Laser- und Oberflächentechnik

Einordnung in das Gesamtprojekt

Professur Laser- und Oberflächentechnik

Gliederung

Einordnung in das Gesamtprojekt

- 01 Hohlformwerkzeuge
- 02 MELATO Anliegen und Effekte
- 03 MELATO Anforderung an Hohlformwerkzeuge zum Heißpressen
- 04 Demonstratorwerkzeug Konstruktion und Herstellung
- 05 Vergleich Temperaturverläufe
- 06 Vergleich Herstellkosten

MELATO-Werkzeuge zum Heißpressen Kötter Folie 3



Professur Laser- und Oberflächentechnik

01 Hohlformwerkzeuge

Was sind Hohlformwerkzeuge?

- enthalten die Werkstückform ganz oder teilweise als Gegenform und übertragen diese auf das Werkstück,
- sind durch eine flächige, beliebig orientierte Belastung der Werkzeugaktivelemente gekennzeichnet.
- Anwendungen : Umformtechnik → Schmieden, Tiefziehen Urformtechnik → Spritzgießen, Pressformen

Quelle: Röders GmbH

Professur Laser- und Oberflächentechnik

01 Hohlformwerkzeuge

allgemeine Anforderungen an das Hohlformwerkzeug:

- Bauteilwerkstoff: TWINTEX® T PP (HGTT), Federdom
- Fertigungsverfahren: Warmpressformen
- Werkzeugaufbau: über die MELATO-Technologie,

- Stößelgeschwindigkeit einer Presse
- therm. Festigkeit gegenüber Temperierungen (statisch)
- Temperierungsgeschwindigkeit
- Relativbewegung von Ober- und Unterwerkzeug
- Formspalt
- geschlossene Oberfläche, geringe Rauheit
- Einbezug von Rundungen, Schrägen
- Zugängigkeit gegenüber einem Roboter

20 ... 40 kN ~ 2 bar, 5 ... 25 mm/s, 20° ... 250°C, gering, ~ 3...10 K/s,

wechselseitig, gleichmäßig, 2...3 mm, porenfrei, $> 1 \mu m$, 1...30 mm, $> 10^{\circ}$, > 300 mm,

MELATO-Werkzeuge zum Heißpressen Kötter Folie 5

Professur Laser- und Oberflächentechnik

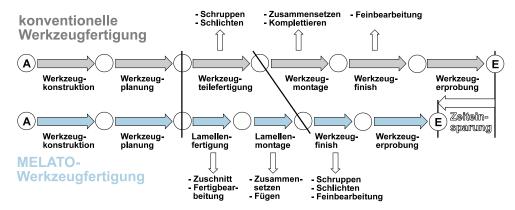
02 MELATO - Anliegen und Effekte

Was bedeutet MELATO?

Der Aufbau von Fertigungswerkzeugen aus ebenen, geschnittenen und gefügten Blechlamellen - **Me**tal **la**minated **to**oling®:

Werkzeugdetail

MELATO-Tiefziehwerkzeug



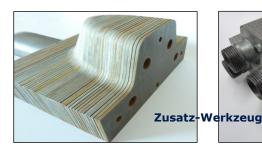
02 MELATO - Anliegen und Effekte

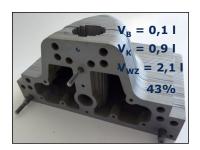
Worin liegen die Vorteile von MELATO?

Gegenüber monolithischen oder blockweise aufgebauten Fertigungswerkzeugen sind folgende Vorteile mit der **MELATO**-Technologie möglich:

1. Schnelle, kostengünstigere Fertigung von Hohlform-Werkzeugelementen, z.B. zum Prototyping:

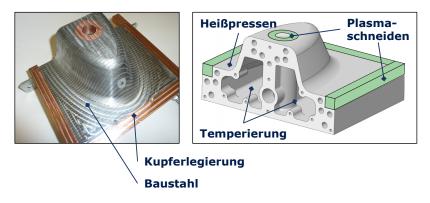
MELATO-Werkzeuge zum Heißpressen Kötter Folie 7




Professur Laser- und Oberflächentechnik

02 MELATO - Anliegen und Effekte

2. Annähernd beliebige Fertigung von Hohlräumen bzw. oberflächenverfolgenden Innenkonturen, z.B. zur <u>Temperierung</u>:



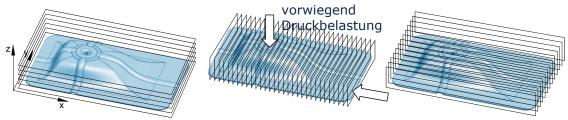
02 MELATO - Anliegen und Effekte

3. Nutzung unterschiedlicher Werkstoffe oder verschiedener Blechdicken für verschiedene Festigkeits- oder Leitfähigkeitsanforderungen in <u>einem</u> Werkzeug, z.B. bei einer <u>Funktionserweiterung</u> des Werkzeuges:

Baustahl /
Legierter Stahl

MELATO-Werkzeuge zum Heißpressen Kötter

Folie 9



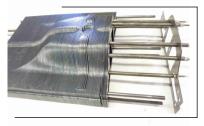
Professur Laser- und Oberflächentechnik

03 MELATO- Anforderung an Werkzeuge zum Heißpressen

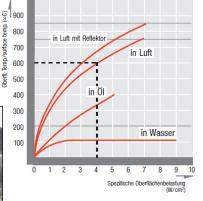
Welche MELATO-Werkzeuggestaltung folgt aus den allgemeinen Anforderungen für das Demonstratorwerkzeug?

- Die mechanische Festigkeit gegenüber Druckbelastungen: Stahlblech, Die Eignung zur Fertigungstechnologie (Laserschneiden, Tauchlöten): unlegierter Blechwerkstoff, Baustahl S 235 JR, Blechdicke 3 mm,
 - Festlegung der Richtung zur Zerlegung in Blechlamellen entsprechend der möglichen Werkzeugbelastung: Slicen in z-Richtung

- Festlegung des Medienanschlusses zur Beheizung und Kühlung: Stirnseite


03 MELATO- Anforderung an Werkzeuge zum Heißpressen

2. Die Temperierung des Werkzeuges: Heizung mit Rundrohrheizkörpern, Ø 8,6 mm, mit einer spez. Oberflächenbelastung von 5 W/cm², 16 Heizkörper mit einer Gesamtanschlussleistung 16 kW


Kühlung mit Wasser, daher eine Gesamtflüssigkeitsdichtheit, resultierende

Temperaturbeständigkeit bis ca. 250°C:

 Festlegung der Montage der Rohrheizkörper mit der Lamellenmontage sowie der Formgebung während der Lamellenmontage:

MELATO-Werkzeuge zum Heißpressen Kötter

Folie 11


Professur Laser- und Oberflächentechnik

03 MELATO- Anforderung an Werkzeuge zum Heißpressen

- 3. Anwendung der MELATO-Technologie:
 - Lamellenfertigung durch Laserschneiden, Laserschmelzschneiden,
 - Zusammensetzen durch manuelle Montage, Verschrauben,
 - Fügen durch Löten, Tauch-Weichlöten,
 - Werkzeugfinish durch Fräsen, Schrupp- und Schlichtfräsen:

MELATO-Werkzeuge zum Heißpressen Kötter

Folie 12

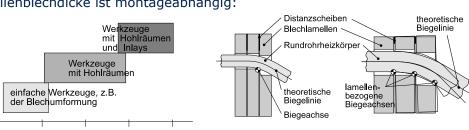
04 Demonstratorwerkzeug - Konstruktion und Herstellung

Wie wurde die MELATO-Technologie am Demonstratorwerkzeug umgesetzt?

1. Das Demonstratorwerkzeug zum Heißpressen des HGTT-TWINTEX wurde als energieminimiertes Presswerkzeug konzipiert und konstruiert:

Professur Laser- und Oberflächentechnik

04 Demonstratorwerkzeug - Konstruktion und Herstellung


2. Die Rundrohrheizkörper konnten mit der Montage der Blechlamellen montiert und gebogen werden:

Lamellenblechdicke [mm]

- die gleichzeitige Montage/Formung von Rohrheizkörpern bzw. Inlays und Lamellenverbunden ist realisierbar,

 wesentlich für eine Formung von Inlays ist die Montageplanung des Lamellenverbundes: Minimierung der Gesamtrückfederung geformter Inlays und der Auffederung des Lamellenverbundes,

- die Lamellenblechdicke ist montageabhängig:

lontage richtung

MELATO-Werkzeuge zum Heißpressen Kötter

Folie 14

04 Demonstratorwerkzeug - Konstruktion und Herstellung

- **3.** Das flüssigkeitsdichte Fügen der Blechlamellen und Inlays ist durch Tauchlöten mit zinkbasierten Loten möglich. Genutzt wurden Hochtemperatur-Verzinkungseinrichtungen mit ~ 550°C Badtemperatur:
 - das üblicherweise zum Beschichten genutzte Hochtemperaturverzinken eignet sich für das Fügen von Stahlblech-Lamellenverbunden, einschließlich der zugehörigen Reinigung/Flußmittelauftrag (Fluxen),
 - die erzielbare mechan. Festigkeit entspricht weichgelöteter Lötverbindungen,
 - die thermische Festigkeit des Fe-Zn-Mischkristalls ist bis ca. 800°C gegeben,
 - wesentlich ist ein bei der Montage einzustellender Lötspalt < 0,1 mm: Zwischen- oder Distanzscheiben:

MELATO-Werkzeuge zum Heißpressen Kötter

Folie 15

Professur Laser- und Oberflächentechnik

05 Vergleichswerkzeug - Konstruktion und Herstellung

Zur Gegenüberstellung zum Demonstratorwerkzeug wurde ein Vergleichswerkzeug konstruiert und gebaut.

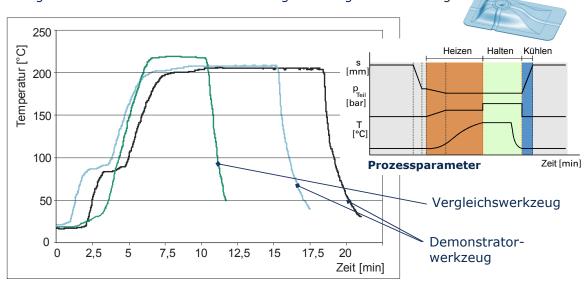
- 1. Das Vergleichswerkzeug zum Heißpressen des HGTT-TWINTEX wurde als konventionelles Presswerkzeug konzipiert und konstruiert:
 - die obere Werkzeugzone ist beheizbar, die mittlere Werkzeugzone dient kammerartig der Kühlung,
 - das Vergleichswerkzeug besitzt 8 Kanäle für die Rundrohrheizkörper, die annähernd konturnah verlaufen,
 - das Vergleichswerkzeug besteht aus AlMg4,5Mn0,7:

05 Vergleichswerkzeug - Konstruktion und Herstellung

2. Das Vergleichswerkzeug besitzt wechselbare Konturschalen:

3. Vorgebogene Rundrohrheizkörper wurden in Aufnahmekanäle eingebettet:

MELATO-Werkzeuge zum Heißpressen Kötter Folie 17



Professur Laser- und Oberflächentechnik

06 Vergleich – Temperaturverläufe

Gegenüberstellung der Temperaturverläufe zum Heißpressen des HGTT-TWINTEX, aufgenommen am Demonstratorwerkzeug und Vergleichswerkzeug:

Professur Laser- und Oberflächentechnik

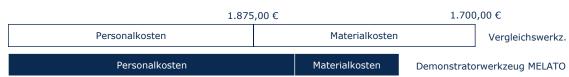
06 Vergleich – Herstellkosten

Zur Fertigung des Demonstratorwerkzeuges und Vergleichswerkzeuges wurden folgende Personalkosten verglichen:

Phase der Herstellung	Arbeitsschritt	Vergleichs- werkzeug		Demonstratorwerkzeug MELATO	
		Stunden	Verhältnis	Stunden	Verhältnis
Konstruktion		30	100%	60	200%
Datenbereitstellung	Datenüberarbeitung	4	100%	16	400%
	Slicen und Anpassung	-		1	100%
Schneiden		-		8	100%
Löten	Vorbereitung	-		0,5	100%
	Vorgang	-		1	100%
	Nachbereitung	-		1	100%
Fräsen		80	250%	32	100%
Endbearbeitung	Montieren	8	100%	24	300%
	Finishen	2	100%	2	100%
	Endkontrolle	1	100%	1	100%
Gesamtfertigung		125	100%	146,5	117%

Dipl.-Kfm. Thomas Niemand Integration betriebswirtschaftlicher Anforderungen in den Forschungsprozess

MELATO-Werkzeuge zum Heißpressen Kötter Folie 19



Professur Laser- und Oberflächentechnik

06 Vergleich – Herstellkosten

Mit den Personalkosten zur Fertigung des Demonstratorwerkzeuges und Vergleichswerkzeuges, ergibt sich folgende Gesamtkostenstruktur:

Kosten	Kostengröße	Vergleichs- werkzeug	Demonstratorwerkzeug MELATO	Kalkulationsgrundlage
	Material	1.200,00 €	400,00 €	
	Werkzeug	500,00€	200,00 €	200,00 € für 32 Stunden Fräsen
	Lotauftrag	-	200,00 €	Je Auftrag inkl. Transport
	Personal	1.875,00 €	2.197,50 €	15,00 € pro Person und Stunde
Gosamtkoston		3.575,00 €	2.997,50 €	

2197,50 € 800,00 €

Dipl.-Kfm. Thomas Niemand Integration betriebswirtschaftlicher Anforderungen in den Forschungsprozess