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Outline of the talk

Main contents:

(1) Combined effects from several flexibility measures
(2) Optimization & Modelling & Control Strategies

Case results from the following journal papers:
[If you want a copy of the papers, send an email to peter.lund@aalto.fi]
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Forthcoming energy transition

e RES & PV constitute major part of future power investment
e RES &EE constitute most of the measures for the Paris Accord
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Transitions In the energy systems

Traditional power system
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Storage functions:
« Voltage regulation

* Frequency regulation
* Load following

« Black start

 T&D deferral

« Arbitrage

e Grid support

« Self-consumption

« Off-grid

* Interseasonal storage



Energy system in
Helsinki (Finland)
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H#1. Improvea riexiplity
through DSM + P2H + Storage

Contents lists available at ScienceDirect

= Alm
sadl ©  Optimal matching of wind & PV
with demand in cities

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Improved flexibility with large-scale variable renewable power in cities o] @ I i
thrl(J)ugh- optimal dtgmartld sidge management and power-tg-heat t @ U n d € rStan d teCh ni Cal & economic
potential of optimal control

Jyri Salpakari %, Jani Mikkola, Peter D. Lund

Data time series

— > Solution
Input time series data e Optimal control & simulation
ectricity and DH consumption
Shitable oads model

PV and wind production

Electricity and DH prices ® DSM, P2H, Storage, DH
e Detailed time series of shiftable
Input parameters MILP model |OadS (DS M)

Energy system dimensioning of the energy system
Initial system state Control strategies (flexibility)
SOC of energy storages Output time series
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and control
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Power profile + shiftable loads
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Electricity load in Helsinki with shiftable components (DSM). The duration
that a load can shift its consumption is indicated in the legend

Improved flexibility with large-scale variable renewable power in cities through optimal demand side management and
power-to-heat conversion
Energy Conversion and Management, Volume 126, 2016, 649-661
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Improved Surplus VRE

Integration

@ due to P2H production
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Cash-flow & NPV when linked to

spot e(l)ectrg:lty market
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#2:0ptimal and rule-based control strategies
for energy flexibility in buildings with PV

« Simulation: on-site building
Ap‘:hedEnergy“ 1 flexibility resources to balance
£hlle s supply and demand mismatch

- Optimization: minimize variable

Optimal and rule-based control strategies for energy flexibility @) covn costs & maximize self-use of PV
in buildings with PV
Jyri Salpakari *, Peter Lund External data w
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Annual grid feed-in (%)

Grid Feed-In

« 8—88% decrease in electricity fed into the grid (relative to reference case)
« 13—-25% savings in electricity bill with cost-optimal control (1h-based price)
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Annual grid feed-in (%)

Annual electricity cost (%)

Annual electricity balance (%)

3 kWp PV system with TES+HP

36—88% decrease in electricity fed into the grid
13—15% savmgs In electricity bill with cost-optimal control (1h-based price)
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Simulation results with a 3-kWp PV system:

(a) annual electricity cost relative to the reference case
(1344 €)

(b) grid feed-in relative to the reference case (537 kWh)
(¢) electricity balance relative to the reference case

| (11,039 kWh).

| The heating system 1s medium-temperature and the heat

pump 1s connected in fixed condensing.



International Journal of

A hybrid lithium-ion battery model for system-level

analyses

eesregey rch

?'IE z
INTERNATIONAL JOURNAL OF ENERGY RESEARCH

sy res s sowe 52 e System level fast model

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/er.3617

Juuso Lindgren®'", Imran Asghar and Peter D. Lund

Solution

« Adequate accuracy

« Thermal effects

* Internal heating

e Empirical multiparameter model; Artificial neural network (ANN)
e ’'Big Data’ from real conditions (battery in weather chamber)

model

Charging
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Battery model verification (V)
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Battery model verification (T)

48 different scenarios
(temperature vs time)
Y=-10-60C
X=0-19000 s

Blue=measured
Black=model

RMSE<3 % of operating
temperature range

-5 A
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Application to complex charging
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Measured and simulated voltage, cell temperature and current when charging the cell at
—10°C ambient temperature with the constant current constant voltage method starting at 5 A.
7 key points of the process are highlighted.
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Flexibility approaches for the
energy system transformation

Figure 2 Key elements of the flexibility vision

ECOFYS

1p energy for everyone

Power System Flexibility Strategic

Roadmap
Preparing power systems to supply reliable power

from variable renewable energy sources

Commercial
power
Sources

C® IRENA

Fiamatonal Raneeabes fnomy Agency

THE AGE OF RENEWABLE POWER

DESIGNING NATIONAL ROADMAPS
FOR A SUCCESSFUL TRANSFORMATION
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Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal s www.slsevi

Review of energy system flexibility measures to enable high levels @w
of variable renewable electricity

Peter D. Lund*, Juuso Lindgren, Jani Mikkola, Jyri Salpakari



Discharge time at rated power

Hours

Flow batteries:Zn-Cl Zn-Air Zn-Br
VRB PSB New chemistries
=
-
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@ High-power supercapacitors
1 kw 10 kw 100 kw 1MW 10MW 100 MW

System power ratings, module size

WIREs Energy Environ 2015, 4:115-132. doi: 10.1002/wene.114

1GW
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Appl Ications:
Voltage
regulation

* Frequency
regulation

« Load following

« Black start

« T&D deferral

« Arbitrage

« Grid support

« Self-consumption

« Off-grid

e Interseasonal
storage
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Rapidly falling costs of battery packs for

electric vehicles Battery cost Battery energy density
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Figure 1| Cost of Li-ion battery packs in BEV. Data are from multiple types of sources and trace both reported cost for the industry and costs for SO |ar Pane|

market-leading manufactures. If costs reach US$150 per kWh this is commonly considered as the point of commercialization of BEV.
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PV & Tesla battery

Hours when PV NOT meeting supply (black)
Case Finland: 3 kWp PV for a household (100%)
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