Improving Energy Resilience in Deep Decarbonization of Energy Systems through Storage Coupling

> Professor Peter D. Lund Aalto University Finland

7. Workshop Energiespeichersysteme TUD, 23.1.2024

7. Workshop Energiespeichersysteme /P.Lund

Outline of talk

- Energy transition and resilience
- Peak heat demand conditions
- Importance of energy efficiency
- Dual thermal storage with peak unit
- Integrated RE concepts with high resilence

Increasing importance of energy system resilience

- <u>Resilience</u> describes the ability to survive and quickly recover from extreme and unexpected disruptions
- Commonly used <u>concepts</u> for energy system resilience include reliability, robustness, risk, stability, survivability, flexibility, agility, fault tolerance, and vulnerability

Renewable and Sustainable Energy Reviews 150 (2021) 111476 7. Workshop Energiespeichersysteme /P.Lund ILA. CC DT 4.0

Electricity demand rises over 80% to more than 150% by 2050 across scenarios and is met increasingly by low-emissions sources at the expense of unabated coal and natural gas

Source: World Energy Outlook, International Energy Agency, Oct 2023

Changing residual load affects optimum power mix

Increasing variable renewable electricity shifts the residual demand towards <u>peak power</u>

<u>Example</u>: PV in Italy's power system, L=power demand, S.U.= self-use limit, storage = Wh/Wp

Energy system in Helsinki Operated by city-own energy company Held

Deep decarbonization case

Helsinki Targeting carbon neutrality by 2035 : 80% emission reductions + 20% carbon sinks

Share of fossil-fuel:					
Heating	89%				
Power	65%				
Transport	91%				

Energy system simulation and optimization framework

Energy flowchart

Order of merit

Power		Heating		Cooling		Fuel	
Wind/PV	1	Waste H	1	СНС	1	P2G	1
EI. STO	2	Solar H	2	P2C	2	Import	2
P2H	3	P2H	3				
CHP	4	Th. STO	4				
P2G	5	CHP	5				
Grid	6	P2G	6				
		HP/Boiler	7				

Features:

- Excel/Visual Basic model
- Techno-economic-emission analysis
- 1-hour simulations over one year ٠
- Date-driven load profile algorithms .
- Many energy technologies Versatile flexibility options •
- Sector coupling (PtX)
- Several energy efficiency strategies
- Storage options
- Control algorithms
- Energy analysis options
- Visualization
- Etc.

Peak heat demand conditions and shaving

- Peak heat demand is driven by the ambient temperature • \circ Cold winter peak > 2 x mild winter peak
- Peak heat power demand >> Average [MW]
- Peak heat energy demand << Yearly [MWh]

^{7.} Workshop Energiespeichersysteme /P.Lund

1000

500

Effects of efficiency strategies on heat peak under weather uncertainty

Findings of analysis

- Weather may affect yearly heat demand by 25%, but peak demand even by 50%
- Modest building energy efficiency measures drop demand and peak up to <10%
- Strong building energy efficiency measures drop demand and peak beyond 30%
- Yields from stronger measures higher in cold weather conditions
- Yields from modest measures less dependent on weather conditions

Efficiency strategies

-10%

• no extra efficiency

0%

• 10% building energy efficiency (U-value)

-20%

Savings (%)

-30%

-40%

- 40% building energy efficiency (U-value)
- 22 °C → 20 °C indoor T

Dual/Multi-use thermal storage to cut peak heat demand

- Enthalpy H (MWh) = m $c_p \Delta T$; \dot{H} (MW) = $\dot{m} c_p \Delta T$; $\Delta T = T_{max}-T^*$
- For peak conditions in dual use: $H(T^*)=0$, $H(T_{max})=H_{max}$

Example of dual storage for peak demand management

- Case: Average weather conditions + some efficiency improvements; peak heat demand =1663 MW
- Large dual weekly-monthly heat storage (100 GWh)
- Peak storage: H_{max} = 6.15 GWh (mc= 205 MWh/K; ΔT =30 K), 6% of total capacity
 - -21% reduction of peak (1663→ 1310 MW)
 - If 1663 MW \rightarrow 1000MW, no effect on the peak

Case Helsinki

Optimum peak cut level vis-a-vis peak storage capacity

- Peak storage capacity 103-615 MWh/K
- Real Max= real peak reduction
- Sto(min) = minimum peak storage capacity
- Total discharging and charging time; max continuous discharging time (Dis, Cha, Dis Max)
- 20% peak cut possible with modest peak storage capacity < 10% of total
- Higher savings require quickly increasing peak storage capacity
 - 25% peak cut require 50% of the total storage
 - Asymptotic value ca 40%, but 100% of total

Systems effects from peak heat demand storage

Case values:

- Peak storage 25% of total storage
- 1/3 of peak demand shaved

Case Helsinki

7. Workshop Energiespeichersysteme /P.Lund

Sensitivity: Internal

Conclusions

Peak conditions

- Energy system resilience is linked to the peak conditions and power
- Share of peak load/power will increase in the optimal mix of power plants to meet the residual load (=more flexibility)
- In deep-decarbonized energy systems, peak load is 5-15 % of the total load, but 80-90 % of the imported electricity or back-up fuel
- Weather causes major uncertainty in the peak power

Peak solutions (and reserves)

- Energy efficiency measures help to decrease power, energy, fuels, uncertainty in peak conditions [but are weather dependent]
- Thermal storage complements energy efficiency, but with more focuses on peak demand only
- Duel storage concept with peak storage could well reduce the peak heat load by 20%
- "Smart solutions" required to fully cover the peak demand and compensate for the uncertainty