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y Key insights:

60 = CO, emissions are dominated
by fossil fuels

= Emissions are at historic
record levels

= Emissions have to reach
1 absolute zero

= Carbon budget for 1.5°C
(67%) is to be used by 2030

2000 2020 2040 2060 2080 2100

Year of net-zero CO, emissions

e e== ;" Carbon budget for 1.5°C
it — (83%) and uncertainty margin
2000 2020 2040 2060 2080 2100 was consumed in 2022
v 02°.:67%) € omarisn ™ Faster transition and net
Lt varming 01.5°C (-50%) negative CO, emissions are
ikl ren required

= Absolute zero CO, emissions
around 2040 must be targeted
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Electricity Heat Transport

Fossil-fuel condensing power station Gas heating Internal-combustion engine

Losses
Losses

Losses

Electricity Propulsion

40 % efficiency 85 % efficiency 25 - 40 % efficiency*
Wind/solar energy Heat pumps Electric mobility

100 % efficiency 340 % efficiency 80 % efficiency

Losses

Losses

Tomorrow

Propulsion

* The efficiency of internal-combustion engines in other applications (e.g. maritime transport, engine-driven power plants) can exceed 50 %.

Key insights:

= Solar energy resource availability is 1000x larger than
the global demand

Direct electricity use is highly efficient

Renewables costs have declined steeply and
continued: solar PV, wind power, batteries, electrolyser,
and others

Combination of these three major drivers leads to
massive uptake of solar PV complemented by wind

Perez R. and Perez M., 2009. A fundamental look on energy reserves for the planet.
The IEA SHC Solar Update, Volume 50

Brown, Breyer et al., 2018., Renewable and Sustainable Energy Reviews, 92, 834-847
IPCC, 2020. 6th Assessment Report WG Il
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Power Market Development: 2007 - 2021

Share of global capacity additions by technology

Empiric trends:

— - e B
o 12%
12% 20% . _,
- 25% 36%
17% “

Electricity supply dominated by PV

and wind power a0 41% 43%

50%
Generation mix will adapt to the mix

: : 21 13%137%
of new installations, year by year b

i
: 19%817%
5% 20% Ll 22980,
6% N 6% :
8%

28% 31%

=

Fossil-nuclear generation will be 22% 21% 16% 13%

increasingly irrelevant 46% 930, 12%
. Eins 30% 9% P> "o f§32% b0, B25% 8257 827% 8%
Solar PV grew by +30% YoY in 2022 - 17% 18%
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Key insights:
Solar PV and wind power dominate new installations, with clear growth trends for PV
Hydropower share declines, a consequence of overall capacity rise, and sustainability limits
Bioenergy (incl. waste) remain on a constant low share

New coal plants are close to fade out

New gas plants decline, with very high gas prices pushing them towards peaking operation
Nuclear is close to be negligible, the heated debate about new nuclear lacks empirical facts

Storage in the PtX Economy source: BNEF, Power Transition Trends 2022
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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Global: PV & Wind Share in 100% RE Studies
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Key insights:
= 3 main groups:
= High PV & wind: more PV
= High PV & wind: more wind
= Lower PV & wind
= PV share of around 50% by 2050 is
standard
= Group of studies with high PV shares
(70-80%) have all in common that they
anticipate continued PV cost decline
= PV strongly benefits from
electrification, low-cost batteries, low-
cost electrolysers, and Power-to-X
= Two studies with highest shares of PV
& wind in TPED have consequently
worked in Power-to-X
= Reasons for lower PV & wind shares
= High PV cost assumptions
= CSP forced in the mix, despite cost
= Bioenergy forced in the mix,

0 10 20 0 60 7080 90100 despite biodiversity issues
Solar PV penetration (%) = Low electrification rates
Storage in the PtX Economy source: Breyer et al., 2022. IEEE Access 10, 78176-78218
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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Europe: Wind & PV Share in 100% RE Studies (,

. JPED and electricity supply of Solar PV and Wind in 2050 Key insights:

journal articles | "= * 2 main groups:
90 J Electricity]| = high PV & wind: more PV

= high PV & wind: more wind

S = PV & wind electricity share >80% standard
S 7. reimann s Schinger . = PV & wind TPED share in 65-85% range
£ o TS | = PV shares around 30-40% by 2050 standard for Europe
] Rogragetal = Victoria et al. is very close with 56% PV share
5 o i 37 i . 1 = This research (link below) finds 61-63% PV share while
S 40 Piczor . | a most recent one finds 54% PV share
B " gt aM 2V = Reasons for PV shares >50%
2 30 “:TL“: = low-cost of PV & batteries & electrolysers
20! ' = high levels of electrification
= high levels of PtX: PV benefits strongly from H, buffering
10 = Difference between 50% and 60% PV share
o = PV differentiation: PV prosumers (R/C/l), fixed and 1-axis

0 10 20 30 40 50 60 70 80 90 100 = independent optimisation of PV options
Solar PV penetration (%) = forcing of supply, e.q. wind offshore, also wave, etc.
= Major reports for public discourse document lack of up-to-date knowledge of consultants
= McKinsey (20% PV share in 2050), DNV (15%), Navigant (14%); IEA WEO SDS (13%) NZE without regional data
= Jlack of ambition: no 100% RE scenario known, much fossil CCS and nuclear, low levels of electrification
= oversimplified models: low temporal and spatial resolution, no cost optimisation, low levels of PtX and sector coupling
= cost assumptions used often violate market trends (too high renewables cost, too low CCS & nuclear costs)

Storage in the PtX Economy source: Breyer, Bogdanov, Ram, et al., 2022. Energy transition
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE from a European perspective. Progress in Photovoltaics
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LUT Energy System Transition Model (LUT-ESTM)
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Key features:
full hourly resolution, applied in global-local studies, comprising about 120 technologies
used for several major reports, in about 50 scientific studies, published on all levels, including Nature
strong consideration on all kinds of Power-to-X (heat, fuels, chemicals, materials, freshwater, CO,, CDR, forests)

St in the PtX E source: Bogdanov, Breyer et al., 2021. Full energy sector transition towards
orage in the conomy 100% renewable energy supply: integrating power, heat, transport and

Christian Breyer P christian.breyer@lut.fi @ChristianOnRE industry sectors including desalination, Applied Energy, 283, 116273
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Global: 100% Renewable Energy System by 2050
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Key insights:
= Low-cost PV-wind-battery-electrolyser-DAC leads to a
i cost-neutral energy transition towards 2050

= Wind energy

e This implies about 63 TW of PV, 8 TW of wind power, 74
nens — TWhe,, of battery, 13 TW, of electrolysers by 2050 for
oo wscs the energy system
This leads to about 3 TW/a of PV, 850 GW,, of
o electrolyser installations in 2040s
PV contributes 69% of all primary energy
Massive investments are required, mainly for PV,

battery, heat pumps, wind power, electrolysers, PtX

M Fossil Gas

Storage in the PtX Economy source: Bogdanov et al., 2021. Energy, 227, 120467
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE EWG/LUT, 2019. Global Energy System based on 100% RE
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Key insights:

Electricity emerges to the dominant primary energy source (<5% » 90%), driven by low-cost and efficiency

Electricity share in final energy is not structurally changing (22% » 45%)

Transition from combustion-based to electron-based society is the fundamental driver, due to efficiency and low-cost
Power-to-X (heat, fuels, mobility, clean water, refined materials, chemicals) explains the discrepancy of TPED vs TFED
Electricity becomes challenging in discussions, as primary energy, secondary energy, energy carrier, final energy

It is NO contradiction to generate electricity and sell molecules, it’s just upstream and downstream business

Storage in the PtX Economy source: Bogdanov et al., 2021. Energy, 227, 120467
Christian Breyer » christian.breyer@lut.fi % @ChristianOnRE EWG/LUT, 2019. Global Energy System based on 100% RE
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Europe: Highly Ambitious Energy-Industry Transition
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ol | | —waw—— " Methods: LUT-ESTM, 1-h, 20-regions, full sector coupling, cost-optimised
& releon = First energy-industry transition to 100% RE in Europe in 1-h & multi-regions
£ — -~ = Industry: cement, steel, chemicals, aluminium, pulp & paper, other industries
50 B Storage . .
s II . o = Energy-industry costs remain roughly stable
g, SRR Ereaneesess = Scenario definition: zero CO, emissions in 2040
o B wae = Massive expansion of electricity would be required
| =ty = e-fuels & e-chemicals ensure stable operation of transport & industry
) = Nuclear: by scenario default phased out by 2040; it is NO critical system
Years . . . .
component; finally countries will decide how to proceed
£ e e What's respected:
= 1.5 °C target & biodiversity & cost effectiveness & air pollution phase-out
= renewal of European energy-industry system & jobs growth
= Why society should not go for such an option?

source: Greens/EFA, Accelerating the European RE
SERENDI PD

2020 2030 2040 2050 | @ChristiaHOnRE transition, Brussels, Sepember, 2022

Years
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System Outlook — Energy Flows in 2020

Europe - 2020
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Power-to-X Economy as new characteristic Term

= Zero CO, emission low-cost energy system is based on electricity
= Core characteristic of energy in future: Power-to-X Economy
= Primary energy supply from renewable electricity: mainly PV plus wind power
= Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
= Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X
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Progress in Photovoltaics

Key insights:

s

Week of most renewables supply (spring) and least

renewables supply (winter) is visualised

A 100% renewables-based and fully integrated energy
system in 2050 will function without fail every day of the
year: Even in the dark winter days the region easily copes

with energy demand

Key balancing components are electrolysers (Power-to-
H,-to-Fuels) that convert electricity to hydrogen, when

electricity is available, but drastically reduce their

utilisation in times of low electricity availability
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Case lberia C

Battery storage SoC (2040) Water electrolysis (2040)
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= Energy systems with very high shares of variable
renewables (PV, wind) require flexibility: supply
complementarity, demand response, sector coupling,
grids, and storage
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= = Battery storage:
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- l o . |‘|‘ ‘“ ‘ l = Electrolysers:
£ WW'W"" = Operation in hours of electricity availability,
f " largely during the sunshine hours, and in the
i . g, H . H ’ summer months with high solar energy yield
: : ) '»“ " = Hydrogen storage:
e e s v 0 e 2w 2wz e sesa T a0 w0 w0 o 10 10 20 2 am 3w s = Operation mainly as a weekly buffer, but also with
diurnal elements for optimal supply of baseload
H,-to-X synthesis

Hourly state-of-charge for utility-scale battery (top left),
operation of electrolysers (top right), state-of-charge for
hydrogen buffer storage (bottom right), and curtailment (bottom
left).

= Curtailment:
= Well balanced system with 8.4% electricity
curtailment during peak solar production months
as least cost solution

14 Storage in the PtX Economy source: ElSayed et al., 2023. 2023, On the full potential and role of different solar photovoltaic
Christian Breyer > christian.breyer@lut.fi @ChristianonRE system technologies in the Iberian energy transition, EU PVSEC, Lisbon
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Operation in hourly resolution shows day-night battery dispatch & wind support
Hydrogen storage as classical buffer storage for H,-to-X, mainly for synthesis
Methane storage is used as seasonal storage

Electrolysers use wind and PV electricity, and much of the latter

Grid utilisation reflects wind and solar supply, high use in winter, PtX in summer
(more details on a following slide)

Heat pumps in full operation in the winter, supported by direct electric heating,
while direct operation seems favourable with TES rather in the summer
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Satymov et al., 2023. Energy and industry
transition to carbon-neutrality in Nordic
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Case Puerto Rico C

Battery storage SoC (2050)

Energy systems with very high shares of variable
renewables (PV, wind) require flexibility: supply
complementarity, demand response, sector
coupling, grids, and storage
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Curtailment (2050 Hydrogen (4 storage SoC 2050 = Slight influence of wind pattern on batteries
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‘”l | I = optimisation via battery-to-electrolyser discharge
| N 7 in the mornings (16% of all battery discharge)
= Electrolysers:
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RAGEAE o Eos o e = Operation different to many regions in the world
= Hydrogen storage similar to battery, but with
more buffering elements as shown in
days/weeks of good wind conditions

. = Operation in hours of electricity availability,
i L largely during the daytime, but also in

3 I ° . I ° days/weeks of good wind conditions

0 ‘ « " Hydrogen storage:

Hourly state-of-charge for utility-scale battery (top left), operation of = Only 4.3% of all electricity demand is hydrogen
electrolysers (top right), state-of-charge for hydrogen buffer storage c tus_"led mtturblnes
= Curtailment:

(bottom right), and curtailment (bottom left) for Puerto Rico in 2050.
= Very well balanced system with only 3.4%

16 Storage in the PtX Economy source: Breyer et al., 2023. Role of solar PV for a sustainable energy system in Puerto Rico in the context of
Christian Breyer > christian.breyer@lut.fi @ChristianOnRI the entire Caribbean featuring the value of offshore floating systems, IEEE Journal of Photovoltaics
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Case Hawaii C

Battery storage SoC (2050) 100%
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Water electrolysis (2050)
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= Small influence of wind pattern on batteries
= Significant usage of stored electricity for
electrolysis (60% of all battery discharge)
= Electrolysers:
= Operation in hours of electricity availability,
almost exclusively during the daytime
= Hydrogen storage:
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T oy — 0 30 I = Operation mainly as a seasonal storage to
P et P e achieve an optimal supply of baseload H,-to-X
synthesis
= Curtailment:

Hourly state-of-charge for battery storage (top left), operation of = Only 0.5% of all generated electricity is curtailed

electrolysers (top right), state-of-charge for hydrogen buffer Low curtailment possible due to flexible

storage (bottom right), and curtailment (bottom left) in 2050. electrolysis operating during peak solar
production

17 Storage in the PtX Economy source: Lopez et al., 2023. Role of Storage in the Power-to-X Economy:
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE The Case of Hawaii, 17t IRES, Aachen
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Global: Hydrogen demand in a Power-to-X Economy

Table 1, Electricity and kydrogen demand across the epergy-industry system in 2030, 2040, and 2050 for
energy uses, steelmaking, and chemical feedstocks. The bydrogen demand is inked to electrolyser capacity
demand. The hydrogen demand 15 induced by Hi-based products demand and leads to CO; as raw matenal

?ﬁﬁ{aﬁ;h};ﬁncaﬁuﬂs. Lower heating values (LHV) are used, and electrolyser efficiencies are alizned to - Hyd rogen is a Subset of the PtX Economy
2030 2040 2050 ref = Main demand: e'fuels (marine, aViation), e'

ieomiely dermond for lechroh - o mes chemicals, e-steel - ammonia, methanol

Stcchuaking TWhe 3718 5601 6281 9] kerosene jet fuel

e s = Primary energy supply from renewable

Hydrogen demand _ electricity: mainly PV plus wind power

Energy system TWhe 1y 356 11,529 34,244 [49] . . ; .

Steelmaking TWhroom 1755 3772 1371 [58] = Direct electrification wherever possible:

T o electric vehicles, heat pumps, desalination,

Electrolyser capacity - lllg - - 5 etc_

Enersv system B THY 2 252 R . . .

e e so1 L7 120 59 = Indirect electrification for e-fuels (marine,

Sietical feedsocks gf;f;‘; o > ol aviation), e-chemicals, e-steel;

H; based products demand = Most routes are power-to-hydrogen-to-X

e Hydrogen TWhez1sv 2,051 6.274 11,963  [49.58.59]

e-Methane® TWhess v 78 778 7419 [49]

B L : o Tt = Numbers shown here represent the highest

= Ammonia TWhes v 76 88 165 [ ever published H, and H,-to-X demand

e-Methancl TWhpseow tsv 2,193 9.495 15,402 [539]

Total TWheal e 1,492 11877 48,384

CO; raw material demand

e-Methane MtCO: 14 153 1458 [49] Source:

e-FTL fuels MiCO 1 1373 28719 149 Breyer, Lopez, et al., 2023. The role of electricity-based

:i&;ﬁfﬁa :ﬁg 529 ,‘3;‘38 4"56‘:'3 Ez} hydrogen in the emerging Power-to-X Economy, International

Total NICO; z04 1057 9135 J of Hydrogen Energy

Galimova et al., 2023. Global trading of renewable electricity-

18 Storage in the PtX Economy based fuels and chemicals to enhance the energy transition
Christian Breyer » christian.breyer@lutfi %% @ChristianOnRE across all sectors towards sustainability, RSER
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Summary & Outlook

Key elements of the arising energy-industry system are:

Comprehensive electrification (direct, indirect) of all demands
Dominating source of primary energy: solar PV and wind power complemented by others
Hydrogen as a subset of the Power-to-X Economy

Role of storage:

Flexibility is key in the Power-to-X Economy, and storage complements other flexibility options
Key flexibilities: supply complementarity, grids, demand response, curtailment, and storage
Batteries: >90% of all electricity storage goes through batteries (prosumers, utility, V2G)
Hydrogen buffer: indirect regulation of the power sector, BUT, almost NO H,-to-electricity need
e-fuels & e-chemicals: almost baseload synthesis, thus, some storage for buffering demand
Thermal energy storage: adaptation to heat loads and heat supply

Role of hydrogen:

Provide solutions when direct electrification is not possible, since the latter is typically more efficient
and lower in cost

Main demand for hydrogen: e-fuels & e-chemicals (e-ammonia, e-methanol, e-kerosene jet fuel, e-
methane, e-hydrogen), e-materials (e-steel, e-carbon fibre)

Hydrogen as an essential intermediate energy carrier in power-to-H,-to-X routes as a subset of the
Power-to-X Economy

Storage in the PtX Economy
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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Thank you for your attention ...
... and to the team!

all publications at: www.scopus.com/authid/detail.uri?authorld=39761029000

new publications also announced via Twitter: @ChristianOnRE &
-

Open your mind. LUT.

Lappeenranta University of Technology
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