

Role of Storage in the Power-to-X Economy

Christian Breyer LUT University 7. Workshop "Energiespeichersysteme" an TU Dresden Dresden, January 23, 2024

CO₂ Emissions: how it developed, where to go

Key insights:

- CO₂ emissions are dominated by fossil fuels
- Emissions are at historic record levels
- Emissions have to reach absolute zero
- Carbon budget for 1.5°C (67%) is to be used by 2030
- Carbon budget for 1.5°C (83%) and uncertainty margin was consumed in 2022
- Faster transition and net negative CO₂ emissions are required
- Absolute zero CO₂ emissions around 2040 must be targeted

Key Drivers: Availability, Electrification, Cost

@Christi

* The efficiency of internal-combustion engines in other applications (e.g. maritime transport, engine-driven power plants) can exceed 50 %.

Key insights:

- Solar energy resource availability is 1000x larger than the global demand
- Direct electricity use is highly efficient
- Renewables costs have declined steeply and continued: solar PV, wind power, batteries, electrolyser, and others
- Combination of these three major drivers leads to massive uptake of solar PV complemented by wind

 Perez R. and Perez M., 2009. A fundamental look on energy reserves for the planet. The IEA SHC Solar Update, Volume 50 Brown, Breyer et al., 2018., Renewable and Sustainable Energy Reviews, 92, 834-847

IPCC, 2020. 6th Assessment Report WG III

Storage in the PtX Economy

Christian Brever ► christian.brever@lut.fi

Power Market Development: 2007 - 2021

Empiric trends:

Electricity supply dominated by PV and wind power

Generation mix will adapt to the mix of new installations, year by year

Fossil-nuclear generation will be increasingly irrelevant

Solar PV grew by +30% YoY in 2022 (note: newly PV electricity > wind)

PV is outside any historic experience

Share of global capacity additions by technology

Key insights:

- Solar PV and wind power dominate new installations, with clear growth trends for PV
- Hydropower share declines, a consequence of overall capacity rise, and sustainability limits
- Bioenergy (incl. waste) remain on a constant low share
- New coal plants are close to fade out
- New gas plants decline, with very high gas prices pushing them towards peaking operation
- Nuclear is close to be negligible, the heated debate about new nuclear lacks empirical facts

Global: PV & Wind Share in 100% RE Studies

Europe: Wind & PV Share in 100% RE Studies

- Major reports for public discourse document lack of up-to-date knowledge of consultants
 - McKinsey (20% PV share in 2050), DNV (15%), Navigant (14%); IEA WEO SDS (13%) NZE without regional data
 - lack of ambition: no 100% RE scenario known, much fossil CCS and nuclear, low levels of electrification
 - oversimplified models: low temporal and spatial resolution, no cost optimisation, low levels of PtX and sector coupling
 - cost assumptions used often violate market trends (too high renewables cost, too low CCS & nuclear costs)

6

LUT Energy System Transition Model (LUT-ESTM)

recent reports

Key features:

- full hourly resolution, applied in global-local studies, comprising about 120 technologies
- used for several major reports, in about 50 scientific studies, published on all levels, including Nature
- strong consideration on all kinds of Power-to-X (heat, fuels, chemicals, materials, freshwater, CO₂, CDR, forests)

Global: 100% Renewable Energy System by 2050

CCGT

Methane CHF

Methane DH

Methane IH

Nuclear PF

Electric heating D

Electric heating I

Heat pump DH

Heat pump IH

Liquid hydroger

Steam reforming

Battery prosu

Gas (CH,) storage

Biogas storage Hydrogen storage

Water electrolys

LNG

Battery

PHES

A-CAES

TES HT

TES DH

CO, DAC

Methanatio

Grids HV

Fischer-Tropsch

OCGT

PV fixed tilted

PV single-axis

PV prosumers

Wind onshore

Wind offshore

CSP SF

ST others

lvdro run-of-riv

lydro reservoir (d.

Geothermal electricit

Geothermal heat Di

Biomass solid

Biomass CHR

Biomass DH

Biomass IH **Biogas CHP**

Biogas digest

Biogas IH

Coal PP hard

Coal CHP

Coal DH

Oil CHE

Oil IH

ICE

Biogas upgrade

Waste-to-energy CHI

Solar thermal heat

Key insights:

- Low-cost PV-wind-battery-electrolyser-DAC leads to a cost-neutral energy transition towards 2050
- This implies about 63 TW of PV, 8 TW of wind power, 74 TWh_{cap} of battery, 13 TW_{el} of electrolysers by 2050 for the energy system
- This leads to about 3 TW/a of PV, 850 GW_{el} of electrolyser installations in 2040s
- PV contributes 69% of all primary energy
- Massive investments are required, mainly for PV, battery, heat pumps, wind power, electrolysers, PtX

8

Role of electricity: Primary vs Final Energy

Key insights:

- Electricity emerges to the dominant primary energy source (<5% ► 90%), driven by low-cost and efficiency
- Electricity share in final energy is not structurally changing (22% ► 45%)
- Transition from combustion-based to electron-based society is the fundamental driver, due to efficiency and low-cost
- Power-to-X (heat, fuels, mobility, clean water, refined materials, chemicals) explains the discrepancy of TPED vs TFED
- Electricity becomes challenging in discussions, as primary energy, secondary energy, energy carrier, final energy
- It is NO contradiction to generate electricity and sell molecules, it's just upstream and downstream business

Europe: Highly Ambitious Energy-Industry Transition

- Methods: <u>LUT-ESTM</u>, 1-h, 20-regions, <u>full sector coupling</u>, cost-optimised
- First energy-industry transition to 100% RE in Europe in 1-h & multi-regions
- Industry: cement, steel, chemicals, aluminium, pulp & paper, other industries
- Energy-industry costs remain roughly stable
- Scenario definition: zero CO₂ emissions in 2040
- Massive expansion of electricity would be required
- e-fuels & e-chemicals ensure stable operation of transport & industry
- Nuclear: by scenario default phased out by 2040; it is NO critical system component; finally countries will decide how to proceed
- What's respected:
 - 1.5 °C target & biodiversity & cost effectiveness & air pollution phase-out
- renewal of European energy-industry system & jobs growth
- Why society should not go for such an option?

System Outlook – Energy Flows in 2020

Europe - 2020

11

transition, Brussels, Sepember, 2022

Power-to-X Economy as new characteristic Term

- Zero CO₂ emission low-cost energy system is based on electricity
- Core characteristic of energy in future: Power-to-X Economy
 - Primary energy supply from renewable electricity: mainly PV plus wind power
 - Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
 - Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X

Source: Power-to-X economy: Breyer, Bogdanov, Ram, Khalili, Lopez, et al., 2022. Progress in Photovoltaics

<u>Breyer et al., 2023.</u> International Journal of Hydrogen Energy

Diagram: <u>Greens/EFA, 2022</u> scenario: RES-2040 for 2050

Hourly Operation and Balancing

Key insights:

- Week of most renewables supply (spring) and least renewables supply (winter) is visualised
- A 100% renewables-based and fully integrated energy system in 2050 will function without fail every day of the year: Even in the dark winter days the region easily copes with energy demand
- Key balancing components are electrolysers (Power-to-H₂-to-Fuels) that convert electricity to hydrogen, when electricity is available, but drastically reduce their utilisation in times of low electricity availability

Electrons-to-Molecules as a major piece of Power-to-X Economy

Outside the scope of this study

Case Iberia

Hourly state-of-charge for utility-scale battery (top left), operation of electrolysers (top right), state-of-charge for hydrogen buffer storage (bottom right), and curtailment (bottom left).

- Energy systems with very high shares of variable renewables (PV, wind) require flexibility: supply complementarity, demand response, sector coupling, grids, and storage
- Battery storage:
 - Charging during the daytime and discharging in the afternoon/night
 - Slight seasonal variation
- Electrolysers:
 - Operation in hours of electricity availability, largely during the sunshine hours, and in the summer months with high solar energy yield
- Hydrogen storage:
 - Operation mainly as a weekly buffer, but also with diurnal elements for optimal supply of baseload H₂-to-X synthesis
- Curtailment:
 - Well balanced system with 8.4% electricity curtailment during peak solar production months as least cost solution

Case Finland

- Operation in hourly resolution shows day-night battery dispatch & wind support
- Hydrogen storage as classical buffer storage for H₂-to-X, mainly for synthesis
- Methane storage is used as seasonal storage
- Electrolysers use wind and PV electricity, and much of the latter
- Grid utilisation reflects wind and solar supply, high use in winter, PtX in summer (more details on a following slide)
- Heat pumps in full operation in the winter, supported by direct electric heating, while direct operation seems favourable with TES rather in the summer

Days of a year

Gas (CH₄) storage SoC (2050)

source:

Satymov et al., 2023. Energy and industry transition to carbon-neutrality in Nordic conditions via local renewable sources, electrification, sector coupling and Power-to-X, submitted

Case Puerto Rico

Hourly state-of-charge for utility-scale battery (top left), operation of electrolysers (top right), state-of-charge for hydrogen buffer storage (bottom right), and curtailment (bottom left) for Puerto Rico in 2050.

- Energy systems with very high shares of variable renewables (PV, wind) require flexibility: supply complementarity, demand response, sector coupling, grids, and storage
- Battery storage:
 - Charging during the daytime and discharging in the afternoon/night
 - Slight seasonal variation
 - Slight influence of wind pattern on batteries
 - optimisation via battery-to-electrolyser discharge in the mornings (16% of all battery discharge)
- Electrolysers:
 - Operation in hours of electricity availability, largely during the daytime, but also in days/weeks of good wind conditions
- Hydrogen storage:
 - Operation different to many regions in the world
 - Hydrogen storage similar to battery, but with more buffering elements as shown in days/weeks of good wind conditions
 - Only 4.3% of all electricity demand is hydrogen used in turbines
- **Curtailment:**
 - Very well balanced system with only 3.4%

source: Breyer et al., 2023. Role of solar PV for a sustainable energy system in Puerto Rico in the context of the entire Caribbean featuring the value of offshore floating systems, IEEE Journal of Photovoltaics

Case Hawaii

Hourly state-of-charge for battery storage (top left), operation of electrolysers (top right), state-of-charge for hydrogen buffer storage (bottom right), and curtailment (bottom left) in 2050.

- Energy systems with very high shares of variable renewables (PV, wind) require flexibility: supply complementarity, demand response, sector coupling, grids, and storage
- Battery storage:
 - Charging during the daytime and discharging in the evening/night
 - Slight seasonal variation
 - Small influence of wind pattern on batteries
 - Significant usage of stored electricity for electrolysis (60% of all battery discharge)
- Electrolysers:
 - Operation in hours of electricity availability, almost exclusively during the daytime
- Hydrogen storage:
 - Operation mainly as a seasonal storage to achieve an optimal supply of baseload H₂-to-X synthesis
- Curtailment:
 - Only 0.5% of all generated electricity is curtailed Low curtailment possible due to flexible electrolysis operating during peak solar production

source: Lopez et al., 2023. Role of Storage in the Power-to-X Economy: The Case of Hawaii, 17th IRES, Aachen

Global: Hydrogen demand in a Power-to-X Economy

Table 1. Electricity and hydrogen demand across the energy-industry system in 2030, 2040, and 2050 for energy uses, steelmaking, and chemical feedstocks. The hydrogen demand is linked to electrolyser capacity demand. The hydrogen demand is induced by H₂-based products demand and leads to CO₂ as raw material demand for e-hydrocarbons. Lower heating values (LHV) are used, and electrolyser efficiencies are aligned to [60] for LHV.

		2030	2040	2050	ref
Electricity demand for	electrolysis				
Energy system	TWhel	548	17,069	48,908	[49]
Steelmaking	TWhel	2,718	5,621	6,284	[58]
Chemical feedstocks	TWhel	2,808	17,319	33,031	[59]
Total	TWhel	6,074	40,009	88,223	
Hydrogen demand					
Energy system	TWh _{H2,LHV}	356	11,529	34,244	[49]
Steelmaking	TWh _{H2,LHV}	1,755	3,772	4,371	[58]
Chemical feedstocks	TWh _{H2,LHV}	1,825	11,690	23,122	[59]
Total	TWh _{H2,LHV}	3,936	26,991	61,737	
Electrolyser capacity					
Energy system	GW _{H2,LHV}	119	2,990	9,252	[49]
Steelmaking ¹	GW _{H2,LHV}	501	1,078	1,249	[58]
Chemical feedstocks	GW _{H2,LHV}	613	3,112	6,208	[59]
Total	GW _{H2,LHV}	1,233	7,180	16,709	
H2-based products dem	and				
e-Hydrogen	TWh _{H2,LHV}	2,051	6,274	11,963	[49,58,59]
e-Methane ²	TWh _{CH4,LHV}	78	778	7,419	[49]
e-FTL fuels	TWh _{FTL,LHV}	2	4,502	9,442	[49]
e-FTL naphtha	TWh _{FTL,LHV}	1	1,125	2,360	[49]
e-Ammonia	TWh _{NH3,LHV}	176	828	1,625	[59]
e-Methanol	TWh _{MeOH,LHV}	2,193	9,495	15,402	[59]
Total	TWhfuel,LHV	4,492	21,877	48,384	
CO ₂ raw material dem	and				
e-Methane	MtCO ₂	14	153	1,458	[49]
e-FTL fuels	MtCO ₂	1	1,373	2,879	[49]
e-FTL naphtha	MtCO ₂	0	343	720	[49]
e-Methanol	MtCO ₂	579	2,188	4,068	[59]
Total	MtCO ₂	594	4.057	9.125	

18

- Hydrogen is a subset of the PtX Economy
- Main demand: e-fuels (marine, aviation), echemicals, e-steel – ammonia, methanol kerosene jet fuel
- Primary energy supply from renewable electricity: mainly PV plus wind power
- Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
- Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel;
- Most routes are power-to-hydrogen-to-X
- Numbers shown here represent the highest ever published H₂ and H₂-to-X demand

Source:

Breyer, Lopez, et al., 2023. The role of electricity-based hydrogen in the emerging Power-to-X Economy, International J of Hydrogen Energy

Galimova et al., 2023. Global trading of renewable electricitybased fuels and chemicals to enhance the energy transition across all sectors towards sustainability, RSER

Summary & Outlook

Key elements of the arising energy-industry system are:

- Comprehensive electrification (direct, indirect) of all demands
- Dominating source of primary energy: solar PV and wind power complemented by others
- Hydrogen as a subset of the Power-to-X Economy

Role of storage:

- Flexibility is key in the Power-to-X Economy, and storage complements other flexibility options
- Key flexibilities: supply complementarity, grids, demand response, curtailment, and storage
- Batteries: >90% of all electricity storage goes through batteries (prosumers, utility, V2G)
- Hydrogen buffer: indirect regulation of the power sector, BUT, almost NO H₂-to-electricity need
- e-fuels & e-chemicals: almost baseload synthesis, thus, some storage for buffering demand
- Thermal energy storage: adaptation to heat loads and heat supply

Role of hydrogen:

- Provide solutions when direct electrification is not possible, since the latter is typically more efficient and lower in cost
- Main demand for hydrogen: e-fuels & e-chemicals (e-ammonia, e-methanol, e-kerosene jet fuel, e-methane, e-hydrogen), e-materials (e-steel, e-carbon fibre)
- Hydrogen as an essential intermediate energy carrier in power-to-H₂-to-X routes as a subset of the Power-to-X Economy

Thank you for your attention and to the team!

all publications at: <u>www.scopus.com/authid/detail.uri?authorld=39761029000</u> new publications also announced via Twitter: <u>@ChristianOnRE</u>

