

Investigation of multi-use applications of a PV Park with hybridized large-scale battery storage and power-to-gas plant

Tim Biermann, Thilo Bocklisch Chair of Energy Storage Systems

7. Online-Workshop Energiespeichersysteme / 7th Energy Storage Systems Workshop Dresden/Online, 23.01.2024

Agenda

- 1. Motivation
- 2. System description and multi-use applications
- 3. Energy management concept
- 4. Simulation-based investigations
- 5. Summary and outlook

1. Motivation

Transformation of the energy system

demand

Development of the installed power of PV and onshore wind in Germany^[1]

- → Target 2030: **215 GW** PV and **115 GW** wind (onshore) installed power
- \rightarrow Sharp increase in fluctuating electricity production
- ightarrow System flexibilization and sector coupling

hydrogen (and derivatives) in the industrial sector

→ This requires **60 GW** of electrolysis capacity to cover German

→ Currently ~173 MW electrolysis capacity installed in Germany [4]

1. Motivation

Transformation of the energy system

1. Motivation

Reference projects

- Energiepark Wunsiedel, Germany (2022) [5]
 - 8,75 MW PEM electrolyzer (Siemens Silyzer 300) for gas grid feed-in and truck trailers
 - 8,4 MW / 10,2 MWh lithium-ion battery storage
 - Cooperation with the University of Bayreuth → Optimizationbased energy management concept with ageing modelling (currently no publications)
- Puertollano Green Hydrogen Plant, Spain (2022)[7]
 - 20 MW PEM electrolyzer (Nel ASA) for industrial sector (ammonia production)
 - 5 MW / 20 MWh lithium-ion battery storage + 100 MW PV park
- HH2E Lubmin project, Germany (planned for 2025)_[9]
 - 50 MW alkaline electrolyzer
 - 200 MWh battery storage + PPA's with offshore wind and PV parks
 - Optimize operation of PtG plant → continuous hydrogen production

Energiepark Wunsiedel, Bavaria, Germany [6]

Puertollano Green Hydrogen Plant, Spain [8]

Roundtrip efficiency of large-scale battery storage (without BoP) 0.965

2000

2500

3000

Hydrogen production

1800

at rated power

---- Efficiency

Limitation Overload range

1600

3500

Investigation of multi-use applications of a PV Park with hybridized large-scale battery storage and power-to-gas plant Chair of Energy Storage Systems, Dipl.-Ing. Tim Biermann, 23.01.2024

1400

225.3 <mark>Nm³/h</mark>

1200

1000

0.96

0.955

0.95

0.945

0.94

0.935

0.93

70

50

40

30

2000

(%)

Efficiency (

Multi-use applications for large-scale battery storage (LSBS) and power-to-gas plant (PtG)

	Large-scale battery storage		Power-to-gas plant
•	Peak-Shaving	•	Hydrogen production
•	Participation in the spot markets	•	Participation in the spot markets
•	Capacity Firming	•	Frequency Containment Reserve (FCR)
•	Frequency Containment Reserve (FCR)	•	automatic Frequency Restoration Reserve
•	automatic Frequency Restoration Reserve (aFRR)	(aFRR)Participation on the natural gas market	(aFRR) Participation on the natural gas market via gas
•	Congestion management (e.g. Grid booster), Black start capability, Synthetic instantaneous reserve		grid feed-in
•	Voltage maintenance, Reactive power compensation, Uninterruptible power supply (UPS)		
•	Optimize operation of PtG plant (Operating range, efficiency, full load hours)		

Multi-use applications for large-scale battery storage and power-to-gas plant

	Large-scale battery storage	Power-to-gas plant
•	Peak-Shaving	Hydrogen production
•	Optimize operation of PtG plant	Participation in the spot markets
•	Participation in the spot markets	
•	Capacity Firming	

3. Energy management concept

Objective functions of the upper energy management level (MPC + MILP)

1st optimization level with 1x24 time steps (1 h resolution):

BP

bp

3. Energy management concept

Objective functions of the upper energy management level (MPC + MILP)

2nd optimization level with 4x24 time steps (15 min resolution):

C_{H2}

 m_{H2}

 a_{cal}

 $\mathsf{b}_{\mathsf{cal}}$

 $\mathsf{E}_{\mathsf{bat}}$

BP

bp

Demonstration of Energy Management Concept

General conditions for the performance comparisons

Peak-Shaving + Capacity Firming + Hydrogen Production

- Constant electricity prices that favor hydrogen production
- Grid capacity limited to 60 % of the nominal capacity of the PV park (12 MW)
- No requirements for grid power
- PV curtailment as a performance criterion

+ Intraday market

- Time-variable electricity price on the spot markets
- Grid capacity limited to 70 % of the nominal capacity of the PV park (14 MW)
- 0.1 MW minimum bid quantity of grid power through market participation
- PV curtailment as a profitability criterion

Comparison of energy management concepts (end of life simulation)

	Performance criteria	Peak-Shaving + Ca Hydrogen p	Peak-Shaving + Capacity Firming + Hydrogen production		+ Intraday market	
	(averaged over years)	Rule-based + Strategy [19] [20]	MPC&MILP + Strategy	MPC&MILP + Strategy	MPC&MILP + Strategy&Filter	
	Lifetime (Battery)	7 years 245 days	8 years 231 days	9 years 357 days	10 years 168 days	
	Profit	993 568 €	1 174 695 €	1 488 972 €	1 476 608 €	
σ	Failure to provide	-	-	0.2113 %	0.1715 %	
Gri	Rel. PV curtailment	1.9156 %	0.6082 %	1.079 %	1.079 %	
	Energy feed to grid	17775 MWh	17860 MWh	19207 MWh	19231 MWh	
	Energy from grid	-269 MWh	-454 MWh	-6406 MWh	-6784 MWh	
BS	Energy throughput	6359 MWh	5870 MWh	5413 MWh	5023 MWh	
LS	Rel. Energy losses	3.83 %	3.77 %	4.31 %	4.1 %	
	Energy throughput	6634 MWh	7101 MWh	11220 MWh	11189 MWh	
plant	Capacity factor	63.76 %	67.02 %	107.33 %	101.22 %	
	ø Efficiency	59.28 %	58.11 %	56.44 %	55.73 %	
PtG	H ₂ -production	104 215 kg	110 062 kg	169 192 kg	168 107 kg	
₽.	Dynamic reduction	98.38 %	96.98 %	88.74 %	82.94 %	

Comparison of energy management concepts (end of life simulation)

	Performance criteria	Peak-Shaving + Capacity Firming + Hydrogen production		+ Intraday market	
	(averaged over years)	Rule-based + Strategy [19] [20]	MPC&MILP + Strategy	MPC&MILP + Strategy	MPC&MILP + Strategy&Filter
	Lifetime (Battery)	7 years 245 days	8 years 231 days	9 years 357 days	10 years 168 days
	Profit	993 568 €	1 174 695 €	1 488 972 €	1 476 608 €
σ	Failure to provide	-	-	0.2113 %	0.1715 %
Gri	Rel. PV curtailment	1.9156 %	0.6082 %	1.079 %	1.079 %
	Energy feed to grid	17775 MWh	17860 MWh	19207 MWh	19231 MWh
	Energy from grid	-269 MWh	-454 MWh	-6406 MWh	-6784 MWh
BS	Energy throughput	6359 MWh	5870 MWh	5413 MWh	5023 MWh
LS	Rel. Energy losses	3.83 %	3.77 %	4.31 %	4.1 %
	Energy throughput	6634 MWh	7101 MWh	11220 MWh	11189 MWh
ant	Capacity factor	63.76 %	67.02 %	107.33 %	101.22 %
d	ø Efficiency	59.28 %	58.11 %	56.44 %	55.73 %
PtG	H ₂ -production	104 215 kg	110 062 kg	169 192 kg	168 107 kg
₽.	Dynamic reduction	98.38 %	96.98 %	88.74 %	82.94 %

5. Summary and Outlook

Summary

- Discussion of suitable multi-use applications in hybrid configuration
- Conceptual advantages through hybridization approach
- → 3-stage hierarchical model predictive management concept
- Results of the simulation-based investigations:
 - → Technical and economic advantages in the performance comparison (higher annual profits, lower PV curtailment, longer lifetime)
 - → Low-pass filter in lower-level energy management reduces the dynamic stress on the battery by using more flexible operation of the PtG plant → longer lifetime

Outlook

- **Quantifiable ageing model for PEM electrolyzer** → Stress and lifetime assessment
- Improving the long-term PV forecast \rightarrow Use of extended weather data (DWD)
- Investigate coupling between the two optimization levels to improve trading potential between market levels
 → (stochastic) price forecast for spot markets
- Investigation/expansion of the lower management level
- Investigate further multi-use cases and generation profiles \rightarrow Application in the real world

Thank you for your attention!

Nr.	Reference
[1]	Umwelt Bundesamt: "Monatsbericht zur Entwicklung der erneuerbaren Stromerzeugung und Leistung in Deutschland", 2024, Arbeitsgruppe Erneuerbare Energien - Statistik (Hrsg.). Online verfügbar unter: https://www.umweltbundesamt.de/sites/default/files/medien/372/dokumente/01-2024_agee- stat_monatsbericht_final.pdf, Zuletzt geprüft am: 18.01.2023
[2]	Figgener et al.: "The development of battery storage systems in Germany: A market review (status 2023) ", 2023. Online verfügbar unter: https://www.battery-charts.de/, Zuletzt geprüft am: 19.01.2024
[3]	Wietschel, M.; Weißenburger, B.; Rehfeldt, M.; Lux, B.; Zheng, L.; Meier, J.: "Preiselastische Wasserstoffnachfrage in Deutschland – Methodik und Ergebnisse", HYPAT Working Paper, 2023, Frauenhofer ISI (Hrsg.). Online verfügbar unter: https://www.hypat.de/hypat-wAssets/docs/new/publikationen/HyPAT_Working-Paper-01_2023_Preiselastische- Nachfrage.pdf, Zuletzt geprüft am: 21.02.2023
[4]	acatech – Deutsche Akademie der Technikwissenschaften e.V.: "Wasserstoff-Kompass – Elektrolyse-Monitor", 2024. Online verfügbar unter: https://www.wasserstoff-kompass.de/elektrolyse-monitor, Zuletzt geprüft am: 19.01.2024
[5]	Mößle, P.; Hermannsdörfer, T., 2022: "Optimierung einer kombinierten Betriebsstrategie einer PEM Elektrolyse und eines Batteriespeichersystems am Energiepark Wunsiedel", Universität Bayreuth. 6. Herbstworkshop Energiespeichersystem TU Dresden, 30.11.2022
[6]	UmweltBank: "Grüne Wasserstoffproduktion "WUN H2"", Online verfügbar unter: https://www.umweltbank.de/firmen/projekte-finanzieren/gruene-wasserstoffproduktion-wun-h2-1, Zuletzt geprüft am: 18.12.2023

Nr.	Reference
[7]	Iberdrola: "Iberdrola commissions the largest green hydrogen plant for industrial use in Europe", 2022. Online verfügbar unter: https://www.iberdrola.com/about-us/what-we-do/green-hydrogen/puertollano-green- hydrogen-plant, Zuletzt geprüft am: 19.12.2023
[8]	JapanseTimes: "Spain wants to be a green energy hub, but risks moving too fast", 2023. Online verfügbar unter: https://www.japantimes.co.jp/news/2023/07/06/world/spain-green-energy-hub-too-fast/, Zuletzt geprüft am: 19.12.2023
[9]	HH2E: "erfolgreiche Finanzierung der Entwicklungsphase", 2024.Online verfügbar unter: https://www.hh2e.de/aktuelles/hh2e-und-foresight-group-freuen-sich-die-erfolgreiche-finanzierung-der- entwicklungsphase-des-gruenen-wasserstoffproduktionsstandorts-in-lubmin-deutschland-bekannt-zu-geben/, Zuletzt geprüft am: 11.01.2024
[10]	Kopp, M., 2018: "Strommarktseitige Optimierung des Betriebs einer PEM-Elektrolyseanlage", Dissertation, Uni Kassel. Online verfügbar unter: https://portal.ub.uni-kassel.de/kup/d/9783737605885, zuletzt geprüft am 27.09.2023
[11]	Englberger, S. P., 2022: "Optimized energy management for battery energy storage via multi-use and multi-storage operation", Dissertation, Technische Universität München, München. Online verfügbar unter: https://nbn-resolving.org/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20220503-1633126-1-5, zuletzt geprüft am 27.09.2023
[12]	Babeda, J., 2019: "Modeling and Steering of Multi-Use Operation With Uninterruptible Power Supply Systems Utilizing the Example of Lead Acid Batteries", Dissertation, RWTH Aachen University, Aachen. Online verfügbar unter: https://publications.rwth-aachen.de/record/789815, zuletzt geprüft am 27.09.2023
[13]	Marchgraber, J., 2021: "Multi-Use Operation of Battery Energy Storage Systems", Dissertation, TU Wien. Online verfügbar unter: https://doi.org/10.34726/hss.2021.92520, zuletzt geprüft am 27.09.2023

Nr.	Reference
[14]	Wicke, M., 2021: "Adaptives, strategie- und optimierungsbasiertes Betriebsführungs-Konzept für ein hybrides Batteriespeichersystem unter Berücksichtigung der Batteriealterung", Diplomarbeit, Technische Universität Dresden, Dresden
[15]	Bergner, J.; Weniger, J.; Tjaden T.: "PVprog-Algorithmus zur Umsetzung der prognosebasierten Batterieladung für PV- Speichersysteme mit messwertbasierten PV- und Lastprognosen (Version 1.1)", Hochschule für Technik und Wirtschaft (HTW), Berlin, 2016. Online verfügbar unter: https://solar.htw-berlin.de/pvprog-algorithmus/, zuletzt geprüft am 27.09.2023
[16]	Naumann, M.; Schimpe, M.; Keil, P.; Hesse, H.; Jossen, A.: "Analysis and modeling of calendar aging of a commercial LiFePO4/graphite cell", Journal of Energy Storage, vol. 17, pg. 153–169, 2018. DOI: 10.1016/j.est.2018.01.019
[17]	Naumann, M.; Spingler, F.; Jossen, A.: "Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell", Journal of Power Sources, vol. 451, 227666, 2020. DOI: 10.1016/j.jpowsour.2019.227666
[18]	García-Triviño, P.; Llorens-Iborra, F.; García-Vázquez, C.; Gil-Mena, A.; Fernández-Ramírez, L.; Jurado, F.: "Long-term optimization based on PSO of a grid-connected renewable energy/battery/hydrogen hybrid system", International Journal of Hydrogen Energy, vol. 21, pg. 10805–10816, 2014. DOI: 10.1016/j.ijhydene.2014.05.064
[19]	Becker, M.; Brauns, J.; Turek, T.: "Battery-Buffered Alkaline Water Electrolysis Powered by Photovoltaics", Chemie Ingenieur Technik, vol. 93, pg. 655–663, 2021. DOI: 10.1002/cite.202000151
[20]	Münderlein, J.: "Numerische Methode zur Auslegung eines hybriden Speichersystems mit Multinutzen", Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, 2020. Online verfügbar unter: https://publications.rwth-aachen.de/record/811008, zuletzt geprüft am 27.09.2023

Nr.	Reference
[21]	Fouda-Onana, F.; Chandesris, M.; Médeau, V.; Chelghoum, S.; Thoby, D.; Guillet, N. (2016): Investigation on the degradation of MEAs for PEM water electrolysers part I: Effects of testing conditions on MEA performances and membrane properties. In: International Journal of Hydrogen Energy (41), S. 16627–16636. DOI: 10.1016/j.ijhydene.2016.07.125.
[22]	Eichman, J.; Townsend, A.; Melaina, M.: "Economic Assessment of Hydrogen Technologies Participating in California Electricity Markets", 2016. DOI: https://doi.org/10.2172/1239543. ISBN: https://www.osti.gov/biblio/1239543
[23]	Allidières, L.; Brisse, A.; Millet, P.; Valentin, S.; Zeller, M.: "On the ability of pem water electrolysers to provide power grid services", International Journal of Hydrogen Energy, vol. 44, pg. 9690–9700, 2019. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.186

Component modeling - Large battery storage - 1/2

- 3 identical battery containers from the manufacturer Narada, each connected in parallel to the AC bus with a central inverter
- System structure :
 - 16 Racks per container (16P)
 - 15 Modules per rack (15S)
 - 48 Cells per module (24S2P)
- Central inverters are modeled with two-dimensional linear interpolation
- Rint model for battery is modeled with state-of-chargedependent open-circuit voltage U_{OCV} (SoC) and internal resistance R_i

Operating parameters	Cell model Narada FE105A	Container 1S16P Racks
Cell type	LFP	LFP
Energy capacity	0,3 kWh	3680 kWh
Charge quantity	105 Ah	3200 Ah
Nominal voltage	3,2 V	1152 V
min. voltage	2,5 V	1008 V
max. voltage	3,65 V	1192 V
max. C-Rate	1	1
Cyclic lifetime	3500) Zyklen
Weight	2,3 kg	30.640 kg
Dimensions	130 x 36 x 240 mm	20ft ISO HC Container

Component modeling - Large battery storage - 2/2

- The semi-empirical ageing models by Naumann (2018) (2020)
 - Calendar ageing dependent on charge state duration and temperature
 - Cyclic ageing dependent on C-rate, depth of discharge, equivalent number of full cycles and temperature
- Simplifications and assumptions:
 - Constant temperature T_{ref} = 25 °C
 - End of life (EoL) at 80 % of remaining capacity
 - Capacity loss with EoL is made up of equal parts cyclical and calendar capacity loss
 - Cyclical ageing with a scaling factor of 0.55
 - Constant depth of discharge for cyclical ageing of 0.5
 - Charging and discharging currents are considered equivalent to charging and discharging power
- ightarrow Calendar ageing depends on the **state of charge**
- → Cyclical ageing depends on **charging and discharging power**

Component modeling - Power-to-gas plant - 1/2

- PEM electrolyzer from Siemens from the Silyzer 200 series (2015)
- Characteristics (conversion, overload and start-up behavior) of the overall system were derived and scaled from measurement data of the power-togas system of Energiepark Mainz from Kopp (2018)

Operating parameters	Value	
Electrolysis type	PEM	
Rated stack power (overload)	1250 kW (2000 kW)	
Dimensions	6,3m x 3,1m x 3,0m	
Start-up time	< 10 s	
Dynamics	125 kW/s (10% of the rated power)	
Operating temperature	60-70 °C	
Output pressure	up to 35 bar	
H ₂ -production (at rated power)	20 kg/h 225 Nm ³ /h	
Stack lifetime	80.000 h	
Weight	17 t	
Fresh water consumption	1,5 l/Nm ³ H ₂ or 340 l/h	

- Start-up losses that occur when starting production from idle and are proportional to the start-up power (1,2 kg_{H2} when starting at 1250 kW)
- Constant no-load losses of 9 kW for heaters, transformers, measurement and control technology, lighting and information hub

[13]

Component modeling - Power-to-gas plant - 2/2

• Overload behavior is determined via an energy integral above the overload power limit and can absorb a maximum of 150 kWh

Load range	Power limit	Description
Rated load	1300 kW	Power can be provided without restriction
Overload limit	1400 kW	From this limit, the integral formation of the overload behavior is active
Maximum power	2000 kW	Maximum power that can be provided as maximum overload durationcan be provided for 15 min
Regeneration	800 kW	Power at which a new overload approval can be issued after 15 minutes

- For the ageing behavior, a combination of static stress based on García-Triviño (2014) is used, which is linearly dependent on the degree of utilization of the system and a dynamic component depending on the power difference
- Based on Fouda-Onana (2016), the degradation is modeled using an decreasing efficiency that depends on the number of operating hours

2. System description and Multi-use applications Modeling the components

0.965

Profitable trading options between spot markets

Jan 01, 2018

	Preis _{DAM} – Preis _{IDM} < 0	Preis _{DAM} – Preis _{IDM} > 0
EDAM < 0		
Е _{DAM} > 0		Buy back electricity volumes already sold at a lower price

Changing role of Power-to-Gas

Today	In the future	
 Onsite hydrogen production due to lack of infrastructure and decarbonization of price-inelastic industry Close to consumer centers with a high number of full load hours to cover continuous hydrogen demand Ramp up of Hydrogen economy 	 Offsite hydrogen production in the vicinity of renewable electricity production Provision of grid-supporting and market-oriented flexibility Stabilization of the market value of renewable energies and reduction of grid congestion 	

Focus on providing many services, flexible hydrogen production one of them

Rule-based reference for performance comparison of upper management level

Upper management level - rulebased reference operation

The power of the electrolyzer either corresponds to the PV power or results from the current state of charge of the battery

- Battery takes over peak shaving
- Grid power results between maximum electrolysis power and maximum grid power
- A battery charge level-dependent electrolysis power is calculated daily at 6 p.m. → constant discharge during the night

Investigation of multi-use applications of a PV Park with hybridized large-scale battery storage and power-to-gas plant Chair of Energy Storage Systems, Dipl.-Ing. Tim Biermann, 23.01.2024

Storage Systems

Reference application 2 (MPC+MILP) - summer day with negative spot prices

- Based on the historical PV output, the forecast PV output for the following day is marketed in the day-ahead auction at 12 noon (blue)
- The strongly negative electricity prices in continuous intraday trading between 11 a.m. and 4 p.m. lead to the economic curtailment of local PV generation
 - Profitable grid procurement during this period
 - Electricity volumes already sold in advance at the day-ahead auction can be bought back more cheaply in intraday trading, allowing revenues to be generated through arbitrage between the market levels

Flawed Day-Ahead participation

Chair of Energ

Storage Systems

Performance criteria	Formula	Description
Capacity factor Power-to-Gas plant	$K_{elz} = \frac{\sum m_{H_2}}{\sum m_{H_2}(BP_{overload})}$	The capacity factor indicates the degree of utilization of the power-to-gas plant and results from the ratio between the amount of hydrogen produced over the entire period and the amount of hydrogen if the plant had been operated continuously at the overload limit
Average Efficiency Power-to-Gas plant	$\eta_{elz} = \frac{\sum m_{H_2} \cdot e_{H_2}}{\int P_{elz} dt}$	The average efficiency results from the ratio between the energy content of the hydrogen produced (the calorific value H_S is used for this) and the energy throughput of the power-to-gas plant
Dynamic reduction Power-to-Gas plant	$DE = 1 - \frac{\int \left(\frac{P_{elz}}{dt}\right)^2 dt}{\int \left(\frac{P_{HESS}}{dt}\right)^2 dt}$	The dynamic load reduction indicates the extent to which the power-to-gas system follows the change in output of the hybrid energy storage system. The higher the value, the greater the dynamic load reduction

