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Context: Advanced Distributed Storage for grid Benefit

* Funded by Department for Energy
Security and Net Zero

* Aim: to develop two domestically
focused thermal towards
commercialisation

* Phase Change Material (PCM) store:
aiming for 14kWh store comprising 3
modules

* Thermochemical storage (TCS): aiming
for 144kWh store comprising 3

modules
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Motivation: Metrics

* Decision making around investment in
energy storage assets is a challenging task
and is typically reliant upon evaluating the
expected performance of the planned asset
on the basis of a set of economic metrics.

* The levelised cost of storage (LCOS) has
significant limitations: temporal
characteristics are not included.

* The net present value (NPV) describes the
discounted present value of an asset
considering both costs and revenue
streams. As such, it offers a means of
incorporating temporal behaviour including
arbitrage value into the value calculation.

Levelised Cost of Storage (LCOS)

OPEX, N Charge cost, EOL
CAPEX + Zn 1 (1 T T')n Z (1 + r)n (1 + T')N+1
LCOS =
kWhgyel $N Energy outy,
n=1 - (14 r)n
Net Present Value (NPV)
NPV[E] = ZN Revenue, AT z OPEX, EOL
L (147)M ne1t (1 + 1" (1 47N+
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Motivation: Metrics

* Decision making around investment in
energy storage assets is a challenging task
and is typically reliant upon evaluating the
expected performance of the planned asset
on the basis of a set of economic metrics.

* The levelised cost of storage (LCOS) has
significant limitations: temporal
characteristics are not included.

* The net present value (NPV) describes the
discounted present value of an asset
considering both costs and revenue
streams. As such, it offers a means of
incorporating temporal behaviour including
arbitrage value into the value calculation.

Levelised Cost of Storage (LCOS)

OPEX, N Charge cost, EOL
CAPEX + Zn 1 (1 T T')n Z (1 + r)n (1 + T')N+1
LCOS =
kWhgyel $N Energy outy,
n=1 - (14 r)n
Net Present Value (NPV)
NPV[E] = ZN Revenue, AT ZN OPEX, EOL
C Lupey (T+1)m n=1 (1471 (14 7r)N+1

Question: How to efficiently estimate ‘Revenue,,’ ?

gy

ADSorB



Methodology: Overview

This study focuses on the development of
an efficient method for estimating an
upper bound on the arbitrage value that
may be achieved by a given storage
device, such that it may be included with
the NPV metric.

The approach employs graphical
modelling and dynamic programming
techniques.

Outcomes are illustrated for a selection of
archetypal storage devices.

Ingesting and pre-processing historical (or forecast) time
series data on available energy prices and associated
carbon intensities.

|ldentifying peaks and troughs in the time series that
represent candidate ‘sell’ and ‘buy’ points, respectively.

Setting up a directed acyclic graph (DAG) to represent
the buy/sell/hold actions (‘edges’) connecting the
identified buy/sell points (‘nodes’).

Searching for path through this graph that optimises
carbon/cost benefits, efficiently returning an estimated

upper bound on cost and/or carbon savings. /[]-ﬂ\
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Methodology: Stock trading

* Aim: identify the maximum ‘profit’ that may
be realised over a period of time through 180
optimising trading decisions 170 - | o
* An ex-post analysis — assumes data )’
160 | o Y C RSN
perfectly known i
 Essentially “buy low, sell high” 150 | ] @2 @+ 06 @5 010 P12
« Transaction costs may be included for both a0 N | /)
. o - |\ ] o | . P N N s TP
buy and sell actions - g RV et
* Optimisation problem may be efficiently 130 | ! | X (1)
solved by 120 t ‘: "1 ;‘ | ] '
1. Identifying trading points in price N ¢ & € &7 9 On
hlstory 110 “,\. :J O 1 © Q Cb o 9
2. Using these to build a bipartite 100 - ,' ] ®13
directed acyclic graph (DAG)
a4 ! L
3. Finding the most profitable path 900 5 10
through the DAG Time
* Example shown is for transaction cost /[].[]\

c=10%
Brandouy O, Mathieu P, Veryzhenko |, Algorithmic determination of the maximum possible earnings for investment ADSorB

strategies, Decision Support Systems, Volume 54, Issue 2 (2013) 816-82



Methodology: Stock trading

Graph construction

1. Trading edge: An edge with associated
weight R;  is constructed between a
candidate buy point i and candidate sell ti >t
point j if and only if the trade is: Rij=p1-c)=p(1+c)=0
* Temporally consistent
* Profitable

2. Forward edge: A zero-weighted edge is
constructed between candidate sell point
m and candidate buy point n if and only if th >ty
the trade is:
* Temporally consistent

Solution
With:
* Find longest (i.e. most profitable) path «  Transaction cost, ¢
through the directed acyclic graph, G
* Or equivalently the shortest path
through the negative graph, —G /H“\

« Solves in linear time 0 (n) P
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Methodology: Stock trading

Graph construction

1. Trading edge: An edge with associated
weight R;  is constructed between a
candidate buy point i and candidate sell ti >t
point j if and only if the trade is: Rij=p1-c)=p(1+c)=0
* Temporally consistent
* Profitable

2. Forward edge: A zero-weighted edge is
constructed between candidate sell point
m and candidate buy point n if and only if th >ty
the trade is:
* Temporally consistent

Solution
With:
* Find longest (i.e. most profitable) path «  Transaction cost, ¢
through the directed acyclic graph, G
* Or equivalently the shortest path
through the negative graph, —G /H“\

« Solves in linear time 0 (n) P



Methodology: Application to Arbitrage

Graph construction

1. Trading edge: An edge with associated
weight R;  is constructed between a
candidate buy point i and candidate sell ti >t
point j if and only if the trade is: Rij = pjflacnf (tj,ti) = Pi/Mcn= 0
* Temporally consistent
* Profitable

2. Forward edge: A zero-weighted edge is
constructed between candidate sell point
m and candidate buy point n if and only if th >ty
the trade is:
* Temporally consistent

Solution
. . . With:
* Find longest (i.e. most profitable) path . Charge efficiency 1.,
through the directed acyclic graph, G . Discharge efﬁciencf, Nach
* Or equivalently the shortest path +  Standing loss function, f(t;, t;)
through the negative graph, —G /H“\

« Solves in linear time 0 (n) P



Methodology: Application to Arbitrage

“Effective” price and carbon records

* Incorporating an air source heat pump
model (Staffell et al, 2012) and local

weather data - jﬂﬂmm

* Assumes either electrical power
converted to thermal energy via HP and
stored as heat, or electrical power stored
and converted to heat via HP as required

» Buy/sell price accounts for changing -—
TOUT prices within the charge/discharge —
period, and could be straightforwardly

extended to account for non-
constant/linear charge rates

» Peak picking applied to identify candidate

trading points, promoting sparsity /[]'[]\

Staffell I, Brett D, Brandon N, Hawkes A, A review of domestic heat pumps, ADSorB
Energy & Environmental Science, Volume 5, (2012) 9291-9306
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Demonstration: Price Arbitrage

Aim: identify the maximum cost reduction that may
be realised over a period of time through optimising
charge/discharge actions

“Price” histories:

Import Price

Effective Price =
ective Price COP

Data for 2021, using:

* Octopus Agile Import TOUT
* Weather for Nottingham, UK

For the example shown:
* Capacity = 10 kWh
* Charge rate = 8 kW
* Discharge rate = 8 kW
* Charge efficiency = 93%
* Discharge efficiency = 93%
» Standing losses = 0.42%/HH period
* Min peak separation = 12 hours

* Results: Upper bound of £0.68/kWh cost reduction,
resulting from 7 charge cycles during period

Effective energy price (p/kWh)

Charge
Discharge

| | | | | |

Jan 02 Jan 03 Jan 04 Jan 05 Jan 06 Jan 07
Timestamp 2021
e 17
2 4 26 ;8 ® 10 e 12 ® 14

{ AN AN A AR LA AN A

*-1 ®3 e 5 e7 ®9 ® 11 ® 13 @ 15
h ~—=-e16
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Demonstration: Price Arbitrage

* Aim: identify the maximum cost reduction that may

be realised over a period of time through optimising
charge/discharge actions

* “Price” histories:

Import Price

Effective Price = coP

* Data for 2021, using:

* Octopus Agile Import TOUT
* Weather for Nottingham, UK

* For the example shown:
* Capacity = 10 kWh
* Charge rate = 8 kW
* Discharge rate = 8 kW
* Charge efficiency = 93%
* Discharge efficiency = 93%
» Standing losses = 0.42%/HH period
* Min peak separation = 12 hours

* Results: Upper bound of £17.81/kWh cost reduction,
resulting from 297 charge cycles during period
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Demonstration: Carbon Arbitrage

Aim: identify the maximum cost reduction that may

be realised over a period of time through optimising
charge/discharge actions

* “Price” histories:

. ) GCl
Effective CO, Intensity = CoP

Data for 2021, using:

National Grid Carbon Intensity (GCI)
Weather for Nottingham, UK

* For the example shown:

* Results: Upper bound of 0.5kgCO2/kWh of storage,

Capacity = 10 kWh

Charge rate = 8 kW

Discharge rate = 8 kW

Charge efficiency = 93%

Discharge efficiency = 93%
Standing losses = 0.42%/HH period
Min peak separation = 12 hours

resulting from 7 charge cycles during period

< T T T T T T ,_R
§ 300 Charge
k=) Discharge
3 250 \Jw 7
‘\
c 200
=
o 150 [
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O 100
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Demonstration: Carbon Arbitrage

* Aim: identify the maximum cost reduction that may

T T T T T T T T T T
300 " Charge

250 Discharge

| ! 5
|i |" | it -' " ||| |,|:|
200 E "M " ¢ »ul : ‘ I " u _

be realised over a period of time through optimising
charge/discharge actions

Effective CO2 intensity (g/kWh)

\lw : : ‘ O

e “Price” histories: 150 | ’ | | Ill'l!| g |||i r.. H ilg I ‘ Ill '| .IU % L '” || ""Jl
: g - P g M ; ' J .“ s

Effective CO, Intensity = GCl 1003 9§ ¥ ] """" ’”' , llm ' '“ "lllu HI ‘ lr |||1 ‘um o (g

2 y = cop " ® - g llH pm
. 0 | | | | | | | | | | |
+ Data for 2021, using: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov  Dec
 National Grid Carbon Intensity (GCl) Timestamp 2021

* Weather for Nottingham, UK

* For the example shown:
* Capacity = 10 kWh
* Charge rate = 8 kW
* Discharge rate = 8 kW
* Charge efficiency = 93%

* Discharge efficiency = 93%
» Standing losses = 0.42%/HH period
* Min peak separation = 12 hours

* Results: Upper bound of 13.0kgCO2/kWh of storage, ﬂl]nﬁ

resulting from 283 charge cycles during period ADSorB




Extension: Limited Charge Cycles

Floyd-Warshall Algorithm

]

<
£ Zs
. = D
Returns the shortest path between pairs of 5 T4
vertices for a weighted graph G(V, E) s [ ,
B &
'(33 o
foreachd e V QN %2
dist[d][d] < O Q O 14
o %
end -
©o
0 10 20 30 40 50 60 70 80 90
for 3?;?[;?[%](3 isiafgi; hEts (s, ) Number of charges during period
end

—
o

n = number of edges in G = |E|
fork=1ton
fori=1ton
forj=1ton
if dist[i, j] > dist[i, k]+ dist[k, j]
then dist[i, j] < dist[0, k]+ dist[k, j]
end
end
end

of storage capacity (£/kWh)

Energy price reduction per kWh
o

o

20 40 60 80 100
Number of charges pa

Running time of 0(n?)
n.B if no edge (s, t) exists, dist[s][t] set to ﬂ[mU

ADSorB
R. Floyd, Algorithm 97, shortest path algorithms, Operations Research, Volume 17 (1969) 395-412



Extension: Limited Charge Cycles

]

Floyd-Warshall Algorithm

<
£ Zs
. = D
Returns the shortest path between pairs of 5 T4
vertices for a directed weighted graph G(V, E) c s
g g3
J 0O
8 32
~ @
foreachd e V Q S 1
dist[d][d] < 0 © 2
end 0
0 10 20 30 40 50 60 70 80 90
for each edge (s,£) € E Number of charges during period
dist[s][t] « weights (s,t)
end 10 T T T T T

o

n = number of edges in G = |E|
fork=1ton
forj=kton
if dist[0, j] > dist[0, k]+ dist[k, j]
then dist[0, j] « dist[0, k]+ dist[k, j]

()]

of storage capacity (£/kWh)
N

Energy price reduction per kWh

end
end 2
0
0 20 40 60 80 100
Running time of 0(n?) Number of charges pa
n.B if no edge (s, t) exists, dist[s][t] set to ﬁ[mU

ADSorB
R. Floyd, Algorithm 97, shortest path algorithms, Operations Research, Volume 17 (1969) 395-412



Demonstration: Price Arbitrage

s T powertom_powerw . m BE TRRE BERRS et Uebers
Elec 1 10.4 3.6 5 10000 50 100 95 95 4 10
Therm 1 7 15 15 1000 50 100 100 100 77 25
Therm 2 10 15 15 1250 50 100 100 100 32 25
Therm 3 144 15 15 1500 50 100 80 100 0 25
Sole cyeles pe effiEiZ?\rc%/e[%] ef?lc?;:g\r/g[i/o] [p/l_k(\:/\(/)fito]
Levelised Cost Elec 1 ok 95 285 16.9
of Storage Therm 1 365 300 100 9.3
(LCOS) Therm 2 365 300 100 8.4
Therm 3 52 240 100 8.1
Arbitrage value pa NPV
Store Cycles pa
/kWh,, [£] Total [£] (£]
Net Present Elec 1 338 64.83 674 -4521
Value (NPV) Therm 1 341 24.45 171 2362
Therm 2 340 27.77 278 4776
Therm 3 52 1.99 286 4747
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Advantages, Limitations and Future Work

Advantages

e Provides an efficient (0(n)) means of evaluating an upper bound on arbitrage value for a candidate system
e Presents possibility of including nonlinear charge/discharge behaviour without increasing computation cost
e Provides a means of evaluating performance with a reduced number of charge/discharge cycles

Limitations
e Represents an approximation
1. “All in” strategy — assumes demand exists; omits consideration of part-charging
2. Peak picking to limit graph size
e Ex-post analysis; data must be available. Achieving performance in practice is the remit of effective control.
e Evaluation for limited charge cycles (Floyd) is far slower than for overall optimum (DAG shortest path)

Future work

e Full comparison to alternative approaches, principally linear programming (LP)
e Extension to multi-objective (cost and carbon) optimisation

e Development of a sharable software application
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Any questions?

Dr Robert Barthorpe, The University of Sheffield
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