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• Funded by Department for Energy 
Security and Net Zero
• Aim: to develop two domestically 

focused thermal towards 
commercialisation
• Phase Change Material (PCM) store:  

aiming for 14kWh store comprising 3 
modules
• Thermochemical storage (TCS): aiming 

for 144kWh store comprising 3 
modules

Context: Advanced Distributed Storage for grid Benefit
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• Decision making around investment in 
energy storage assets is a challenging task 
and is typically reliant upon evaluating the 
expected performance of the planned asset 
on the basis of a set of economic metrics. 

• The levelised cost of storage (LCOS) has 
significant limitations: temporal 
characteristics are not included. 

• The net present value (NPV) describes the 
discounted present value of an asset 
considering both costs and revenue 
streams. As such, it offers a means of 
incorporating temporal behaviour including 
arbitrage value into the value calculation. 

Motivation: Metrics 
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Question: How to efficiently estimate ‘Revenuen’ ?



• This study focuses on the development of 
an efficient method for estimating an 
upper bound on the arbitrage value that 
may be achieved by a given storage 
device, such that it may be included with 
the NPV metric.

• The approach employs graphical 
modelling and dynamic programming 
techniques.

• Outcomes are illustrated for a selection of 
archetypal storage devices.

Ingesting and pre-processing historical (or forecast) time 
series data on available energy prices and associated 

carbon intensities.

Identifying peaks and troughs in the time series that 
represent candidate ‘sell’ and ‘buy’ points, respectively.

Setting up a directed acyclic graph (DAG) to represent 
the buy/sell/hold actions (‘edges’) connecting the 

identified buy/sell points (‘nodes’).

Searching for path through this graph that optimises 
carbon/cost benefits, efficiently returning an estimated 

upper bound on cost and/or carbon savings. 

Methodology: Overview



• Aim: identify the maximum ‘profit’ that may 
be realised over a period of time through 
optimising trading decisions

• An ex-post analysis – assumes data 
perfectly known

• Essentially “buy low, sell high”
• Transaction costs may be included for both 

buy and sell actions
• Optimisation problem may be efficiently 

solved by:
1. Identifying trading points in price 

history
2. Using these to build a bipartite 

directed acyclic graph (DAG)
3. Finding the most profitable path 

through the DAG
• Example shown is for transaction cost 

c=10%

Methodology: Stock trading

Brandouy O, Mathieu P, Veryzhenko I, Algorithmic determination of the maximum possible earnings for investment 
strategies, Decision Support Systems, Volume 54, Issue 2 (2013) 816-82



Graph construction

1. Trading edge: An edge with associated 
weight 𝑅),+ is constructed between a 
candidate buy point 𝑖 and candidate sell 
point 𝑗 if and only if the trade is:
• Temporally consistent
• Profitable

2. Forward edge: A zero-weighted edge is 
constructed between candidate sell point 
𝑚 and candidate buy point 𝑛 if and only if 
the trade is:
• Temporally consistent

Solution

• Find longest (i.e. most profitable) path 
through the directed acyclic graph, 𝐺
• Or equivalently the shortest path 

through the negative graph, −𝐺
• Solves in linear time 𝒪 𝑛

Methodology: Stock trading

𝑡! > 𝑡"
𝑅",! = 𝑝! 1 − 𝑐 − 𝑝" 1 + 𝑐 ≥ 0

With:
• Transaction cost, 𝑐

𝑡$ > 𝑡%
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Methodology: Stock trading



Graph construction

1. Trading edge: An edge with associated 
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Graph construction

1. Trading edge: An edge with associated 
weight 𝑅),+ is constructed between a 
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point 𝑗 if and only if the trade is:
• Temporally consistent
• Profitable

2. Forward edge: A zero-weighted edge is 
constructed between candidate sell point 
𝑚 and candidate buy point 𝑛 if and only if 
the trade is:
• Temporally consistent

Solution

• Find longest (i.e. most profitable) path 
through the directed acyclic graph, 𝐺
• Or equivalently the shortest path 

through the negative graph, −𝐺
• Solves in linear time 𝒪 𝑛

Methodology: Application to Arbitrage

𝑡$ > 𝑡%

𝑡! > 𝑡"
𝑅",! = 𝑝!𝜂&'(𝑓 𝑡! , 𝑡" − 𝑝"/𝜂'(≥ 0

With:
• Charge efficiency 𝜂'(
• Discharge efficiency 𝜂&'(
• Standing loss function, 𝑓 𝑡! , 𝑡"



“Effective” price and carbon records

• Incorporating an air source heat pump 
model (Staffell et al, 2012) and local 
weather data

• Assumes either electrical power 
converted to thermal energy via HP and 
stored as heat, or electrical power stored 
and converted to heat via HP as required

• Buy/sell price accounts for changing 
TOUT prices within the charge/discharge 
period, and could be straightforwardly 
extended to account for non-
constant/linear charge rates 

• Peak picking applied to identify candidate 
trading points, promoting sparsity 

Methodology: Application to Arbitrage

Staffell I, Brett D, Brandon N, Hawkes A, A review of domestic heat pumps, 
Energy & Environmental Science, Volume 5, (2012) 9291-9306
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• Aim: identify the maximum cost reduction that may 
be realised over a period of time through optimising 
charge/discharge actions

• “Price” histories:

Effective Price =
Import Price

COP

• Data for 2021, using:
• Octopus Agile Import TOUT
• Weather for Nottingham, UK

• For the example shown:
• Capacity = 10 kWh
• Charge rate = 8 kW
• Discharge rate = 8 kW
• Charge efficiency = 93%
• Discharge efficiency = 93%
• Standing losses = 0.42%/HH period
• Min peak separation = 12 hours

• Results: Upper bound of £0.68/kWh cost reduction, 
resulting from 7 charge cycles during period

Demonstration: Price Arbitrage
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• Aim: identify the maximum cost reduction that may 
be realised over a period of time through optimising 
charge/discharge actions

• “Price” histories:

Effective CO2 Intensity =
GCI
COP

• Data for 2021, using:
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• Weather for Nottingham, UK
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charge/discharge actions

• “Price” histories:

Effective CO2 Intensity =
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COP
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• National Grid Carbon Intensity (GCI)
• Weather for Nottingham, UK

• For the example shown:
• Capacity = 10 kWh
• Charge rate = 8 kW
• Discharge rate = 8 kW
• Charge efficiency = 93%
• Discharge efficiency = 93%
• Standing losses = 0.42%/HH period
• Min peak separation = 12 hours

• Results: Upper bound of 13.0kgCO2/kWh of storage, 
resulting from 283 charge cycles during period
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Floyd-Warshall Algorithm

Returns the shortest path between pairs of 
vertices for a weighted graph 𝐺 𝑉, 𝐸

Running time of 𝒪 𝑛,
n.B if no edge 𝑠, 𝑡 exists, 𝑑𝑖𝑠𝑡 𝑠 𝑡 set to ∞

Extension: Limited Charge Cycles

for each	𝑑 ∈ 𝑉
𝑑𝑖𝑠𝑡 𝑑 𝑑 ← 0

end

for each	edge		 𝑠, 𝑡 ∈ 𝐸
𝑑𝑖𝑠𝑡 𝑠 𝑡 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑠, 𝑡

end

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐺 = 𝐸
for 𝑘 = 1 to	𝑛
for 𝑖 = 1 to	𝑛
for 𝑗 = 1 to	𝑛

if	𝑑𝑖𝑠𝑡 𝑖, 𝑗 > 𝑑𝑖𝑠𝑡 𝑖, 𝑘 + 𝑑𝑖𝑠𝑡 𝑘, 𝑗
then	𝑑𝑖𝑠𝑡 𝑖, 𝑗 ← 𝑑𝑖𝑠𝑡 0, 𝑘 +	𝑑𝑖𝑠𝑡 𝑘, 𝑗

end
end

end

R. Floyd, Algorithm 97, shortest path algorithms, Operations Research, Volume 17 (1969) 395–412



Floyd-Warshall Algorithm

Returns the shortest path between pairs of 
vertices for a directed weighted graph 𝐺 𝑉, 𝐸

Running time of 𝒪 𝑛U
n.B if no edge 𝑠, 𝑡 exists, 𝑑𝑖𝑠𝑡 𝑠 𝑡 set to ∞

Extension: Limited Charge Cycles

for each	𝑑 ∈ 𝑉
𝑑𝑖𝑠𝑡 𝑑 𝑑 ← 0

end

for each	edge		 𝑠, 𝑡 ∈ 𝐸
𝑑𝑖𝑠𝑡 𝑠 𝑡 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑠, 𝑡

end

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐺 = 𝐸
for 𝑘 = 1 to	𝑛
for 𝑗 = 𝑘 to	𝑛

if	𝑑𝑖𝑠𝑡 0, 𝑗 > 𝑑𝑖𝑠𝑡 0, 𝑘 + 𝑑𝑖𝑠𝑡 𝑘, 𝑗
then	𝑑𝑖𝑠𝑡 0, 𝑗 ← 𝑑𝑖𝑠𝑡 0, 𝑘 +	𝑑𝑖𝑠𝑡 𝑘, 𝑗

end
end

R. Floyd, Algorithm 97, shortest path algorithms, Operations Research, Volume 17 (1969) 395–412



Demonstration: Price Arbitrage

Store Cycles pa Charge 
efficiency [%]

Discharge 
efficiency [%]

LCOS 
[p/kWhsto]

Elec 1 365 95 285 16.9
Therm 1 365 300 100 9.3
Therm 2 365 300 100 8.4
Therm 3 52 240 100 8.1

Store Cycles pa
Arbitrage value pa NPV                 

[£]/kWhcap [£] Total [£]
Elec 1 338 64.83 674 -4521

Therm 1 341 24.45 171 2362
Therm 2 340 27.77 278 4776
Therm 3 52 1.99 286 4747

Levelised Cost 
of Storage 

(LCOS)

Net Present 
Value (NPV)

Store Capacity.          
[kWh]

Charge 
Power [kW]

Discharge 
Power [kW]

CAPEX
[£]

OPEX/pa      
[£] EoL [£] Charge Eff 

[%]
Discharge 

Eff  [%]
Standing 

Losses [W] Life [years]

Elec 1 10.4 3.6 5 10000 50 100 95 95 4 10
Therm 1 7 15 15 1000 50 100 100 100 77 25
Therm 2 10 15 15 1250 50 100 100 100 32 25
Therm 3 144 15 15 1500 50 100 80 100 0 25



Advantages, Limitations and Future Work
Advantages
• Provides an efficient (𝒪 𝑛 ) means of evaluating an upper bound on arbitrage value for a candidate system
• Presents possibility of including nonlinear charge/discharge behaviour without increasing computation cost
• Provides a means of evaluating performance with a reduced number of charge/discharge cycles

Limitations
• Represents an approximation

1. “All in” strategy – assumes demand exists; omits consideration of part-charging
2. Peak picking to limit graph size

• Ex-post analysis; data must be available. Achieving performance in practice is the remit of effective control.
• Evaluation for limited charge cycles (Floyd) is far slower than for overall optimum (DAG shortest path )

Future work
• Full comparison to alternative approaches, principally linear programming (LP)
• Extension to multi-objective (cost and carbon) optimisation
• Development of a sharable software application
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