

Fak. Maschinenwesen / Inst. für Energietechnik / Prof. für Gebäudeenergietechnik und Wärmeversorgung

Diplomarbeit Nr. 4/2022

Implementation and validation of a Python package for the calculation of time-resolved solar yields

Bearbeiter/in: Bogdan Narusavicius

Task

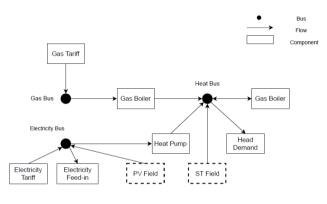
The goal of the thesis is to develop a Python package capable of:

- Calculating solar irradiation on an inclined surface
- Calculating solar thermal yields
- Calculating photovoltaic yields

The package is to be validated with the selected reference software and be applied in a use-case scenario

Implementing a Python package – STLIB

ISTLIB features:


- Three solar thermal collector models
- Losses calculation due to piping and shading
- Deutsche Wetterdienst as weather data source
- PVWatts model for calculating photovoltaic power output
- Implementation of two anisotropic sky models
- Solar position and angle of incidence calculation

Validation

Validation of the STLIB was performed with the help of several reference tools

Application

Application was demonstrated by integrating STLIB into FlixOpt optimization tool

Conclusions

- STLIB performs accurate solar thermal calculations
- Higher deviations in solar thermal validation due to misconfiguration of Polysun software
- Higher deviations in photovoltaic validation due to simplifications of PVWatts model
- Succesful application performed within FlixOpt framework

Future work

- FreeSolCalc Excel Tool
- Solites Excel Tool
- Polysun

	Table 7: Solar thermal yields statistical values								
	Reference to	MAPE $(\%)$	MBE (MWh)	RMSE (MWh)	NRMSE				
Ī	FSC	2,24	-0,26	$0,\!48$	0,004				
	Solites	0,82	-0,064	0,2	0,002				
I	Polysun	$18,\!62$	-1,238	4,83	$0,\!05$				

Table	8:	\mathbf{PV}	yields	statistical	values
-------	----	---------------	--------	-------------	--------

Reference to	MAPE $(\%)$	MBE (kWh)	RMSE (kWh)	NRMSE
Polysun	6,22	-10,09	11,92	0,053

STLIB can be improved in following ways:

- Implementation of anti-freeze losses, additional liquids, and sky models
- Bug fixing
- Code optimization
- More accepted weather data formats

Mitglied im Netzwerk von:

