Concept and Measurement Results of Two Solar Thermal Feed-in Substations

Research Project SOLSTAND

11 September 2018

<u>Martin Heymann,</u> Toni Rosemann, Karin Rühling – Technische Universität Dresden Tino Tietze – DREWAG

Bernd Hafner – Viessmann

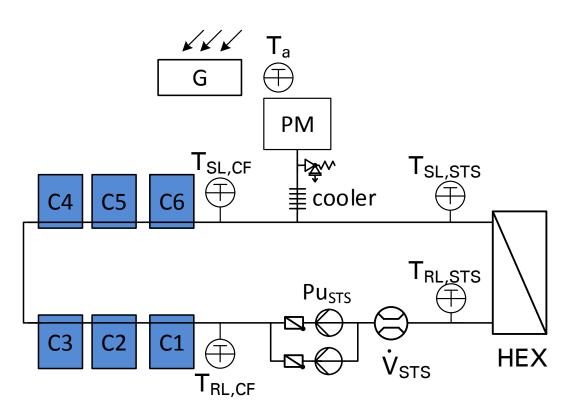
THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Pilot Plants of R&D SOLSTAND

Name	Substation Type	Feed-In Temperature	Heat Output	Current State
FP1	Feed-In	110 °C	30 kW	In Operation
FP2	Feed-In	75 °C	89 kW	In Operation
FP3	Feed-In direct	75 °C	60 kW	Performance Optimization
FP4	Prosumer	65 °C	44 kW	Performance Optimization

Collector fields of Feed-in Plant 1 (left) & Feed-in Plant 3 (right)

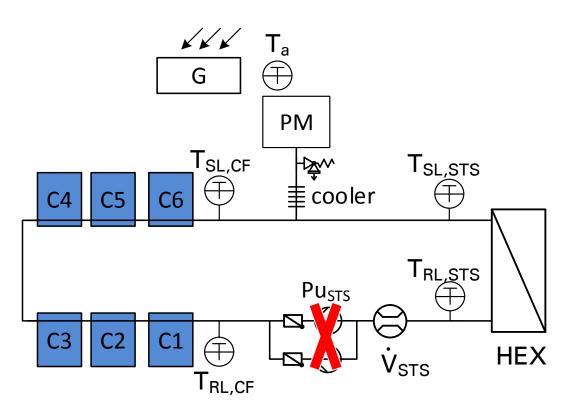
© Ralf Willenberg


© GEWV

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Facts:

- 83 m² gross collector area
- Vacuum tube TEST-collectors
- Water as heat transfer medium


Operation states:

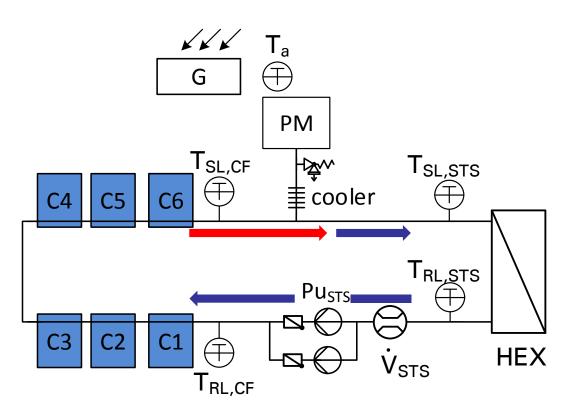
CF .. collector field, STS .. solar thermal system

Facts:

- 83 m² gross collector area
- Vacuum tube TEST-collectors
- Water as heat transfer medium

Operation states:

1. Standby


CF .. collector field, STS .. solar thermal system

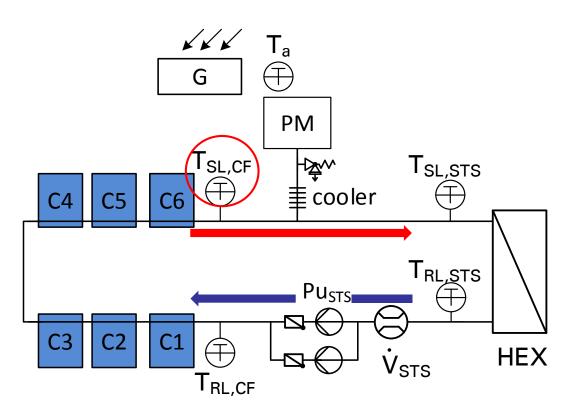
THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Facts:

- 83 m² gross collector area
- Vacuum tube TEST-collectors
- Water as heat transfer medium

Operation states:

- 1. Standby
- 2. HeatUp


CF .. collector field, STS .. solar thermal system

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

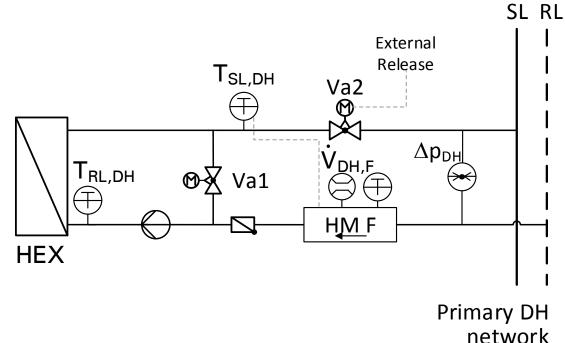
Facts:

- 83 m² gross collector area
- Vacuum tube TEST-collectors
- Water as heat transfer medium

Operation states:

- 1. Standby
- 2. HeatUp
- 3. Feed-in
 - matched flow temperature setpoint control of $\rm T_{\rm SL,CF}$

CF .. collector field, STS .. solar thermal system



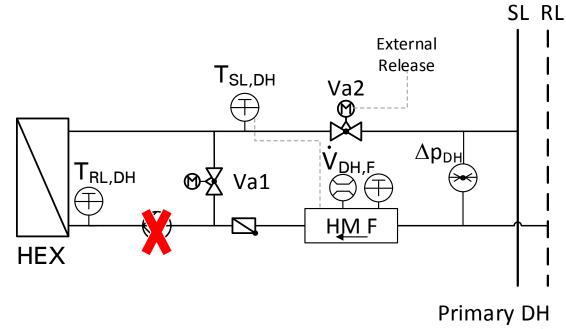
Facts:

- RL/SL feed-in, indirect connection to DH
- External Release Signal

Operation states:

DH .. district heating network

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling



Facts:

- RL/SL feed-in, indirect connection to DH
- External Release Signal

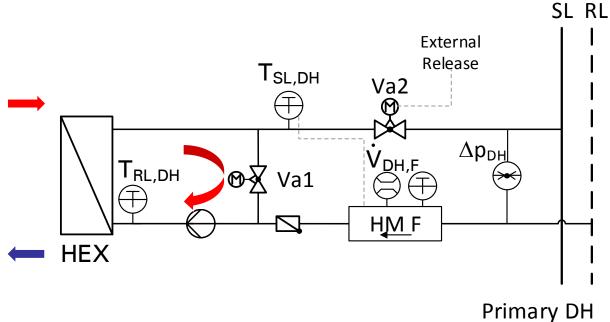
Operation states:

1. Standby

network

DH .. district heating network

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling



Facts:

- RL/SL feed-in, indirect connection to DH
- External Release Signal

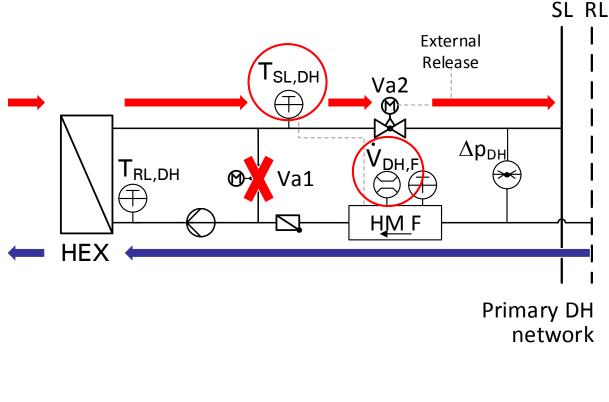
Operation states:

- 1. Standby
- 2. HeatUp

network

DH .. district heating network

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

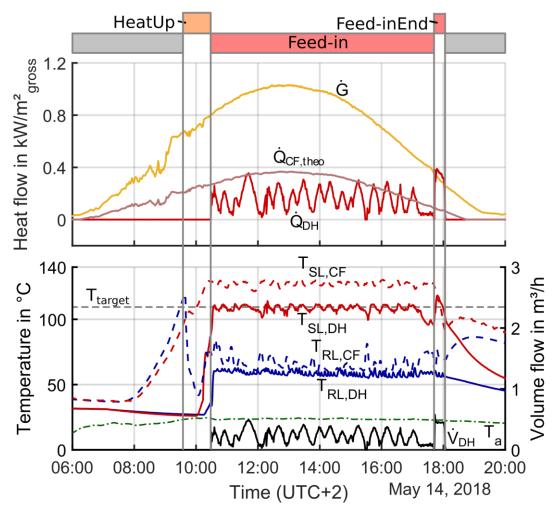

Facts:

- RL/SL feed-in, indirect connection to DH
- External Release Signal

Operation states:

- 1. Standby
- 2. HeatUp
- 3. Feed-in
 - Cascade control
 - matched flow setpoint control of T_{SL,DH},
 - volume flow signal $\dot{V}_{\rm DH,F}$ used to maintain stable volume flow despite changing $\Delta p_{\rm DH}$

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling



DH .. district heating network

Operation Behavior - FP1

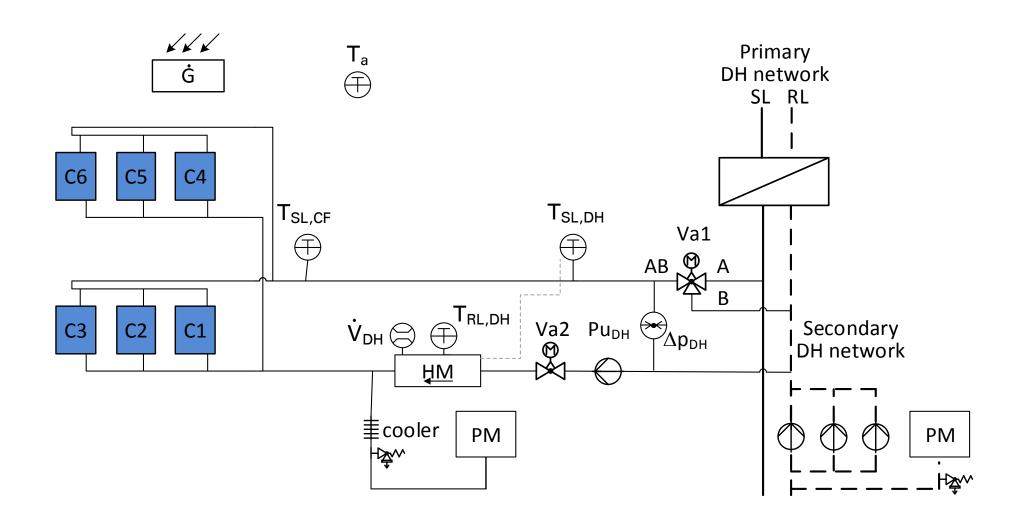
- Thermal output of collector field below theoretically expected gains (TEST-collectors)
- Fluctuating volume flow and thermal output (due to large piping and thermal capacity of collectors)
- Heat can be delivered on challenging temperature level and pressure conditions
- Very stable feed-in temperature, minimal deviation to target temperature

Concept - FP3

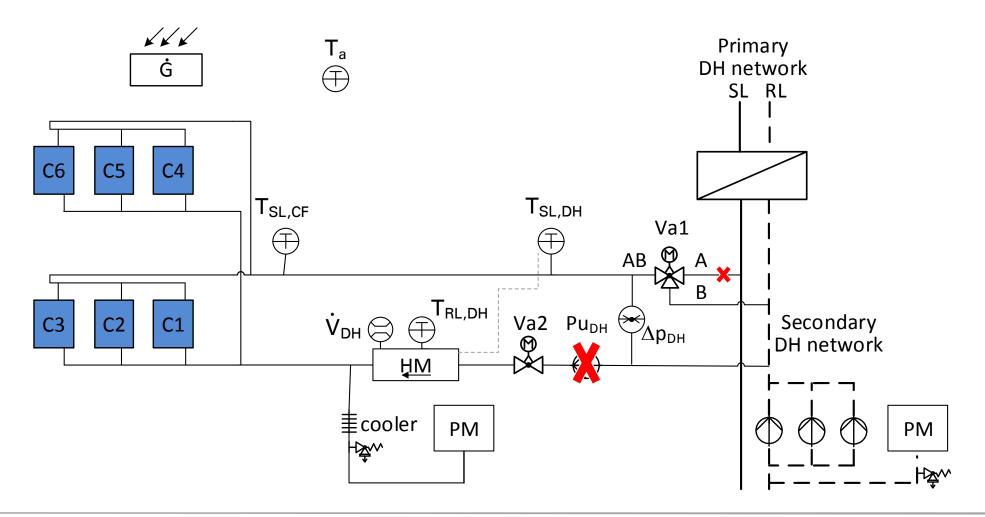
Facts:

- 143 m² gross collector area
- Vacuum tube collector Viessmann SPEA
- Water as heat transfer medium
- Direct connection to DH at main heat transfer station
- Usage of DH pressure maintenance as test

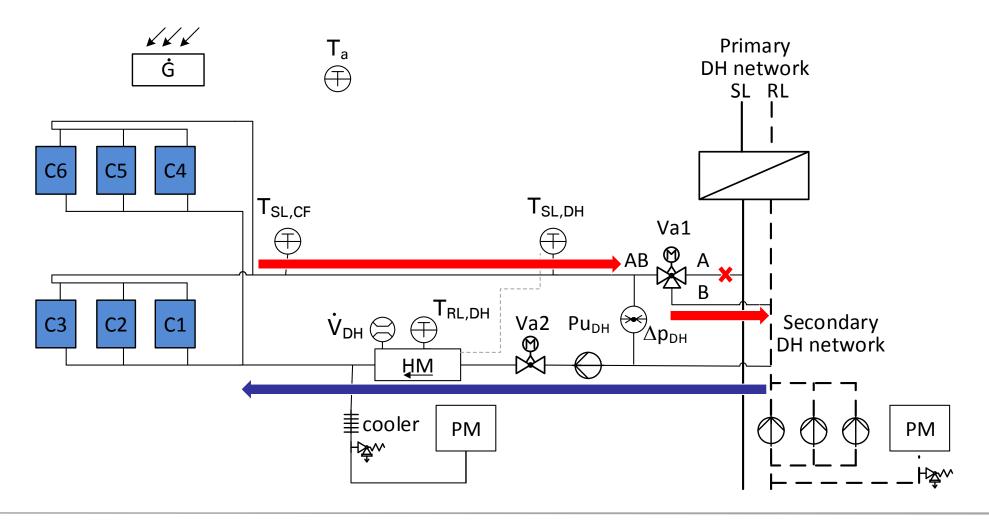
Operation states:


- 1. RL/RL feed-in for start-up
 - Activated, when starting temperature threshold is reached (65°C)
- RL/SL feed-in for normal operation, (not working so far!)
 - Activated, when switching temperature threshold is reached (70°C)
 - matched flow setpoint control of T_{SL,DH}

Concept - FP3

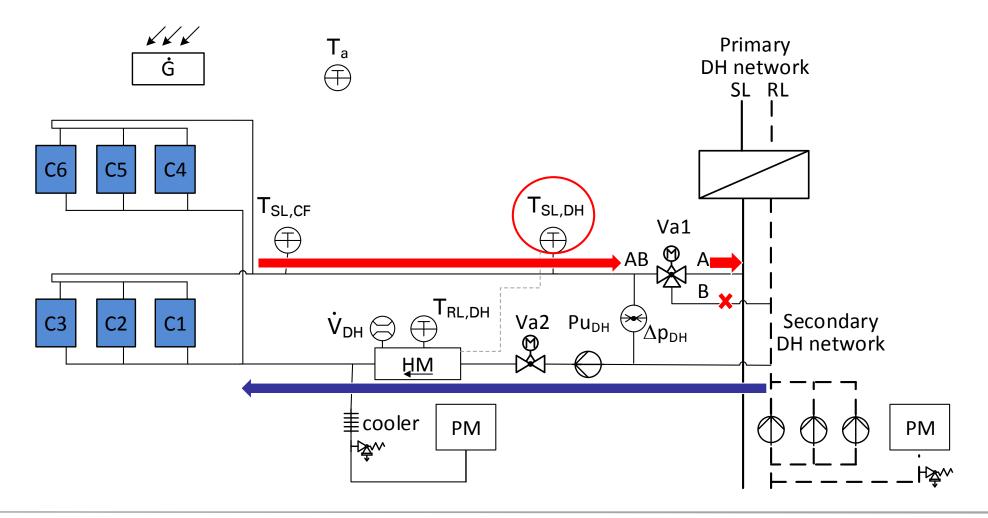

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Operation state: Standby

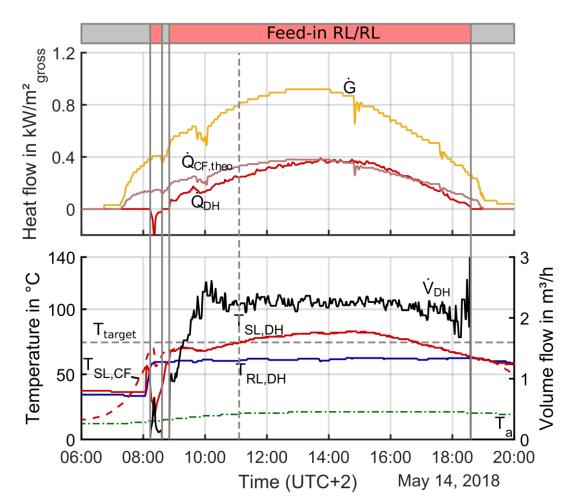


Concept - FP3

Operation state: RL/RL Feed-in



Operation state: RL/SL Feed-in



THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Operation Behavior - FP3

- Thermal output of collector field close to theoretically expected gains
- Feed-in target temperature can not be maintained (V_{max} of pump to small)

How to Compare Two Systems?

on District Heating and Cooling

<u>Problem</u>: Two systems with different concept, size and operation conditions <u>Solution</u>: Usage of performance indicators ζ , ν , *COP*

$$\zeta_{\rm FP} = \frac{Q_{\rm DH}}{G} \quad \text{Average efficiency of system}$$

$$\zeta_{\rm FP\setminus CF} = \frac{Q_{\rm DH}}{Q_{\rm CF}} \quad \text{Average efficiency of the FP, excluding the performance of the CF}$$

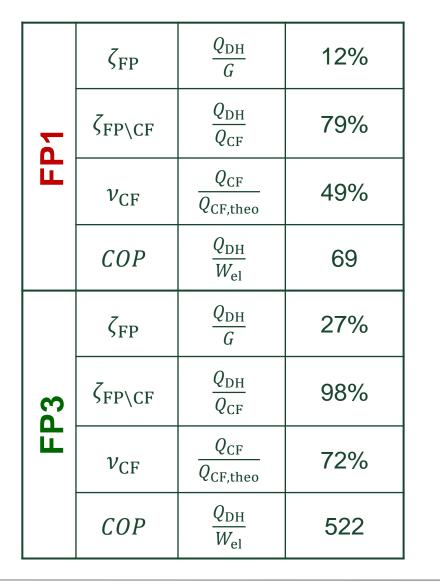
$$v_{\rm CF} = \frac{Q_{\rm CF}}{Q_{\rm CF, theo}} \quad \text{Degree of quality of the collector field, using the solar thermal collector equation as a simplified reference model}$$

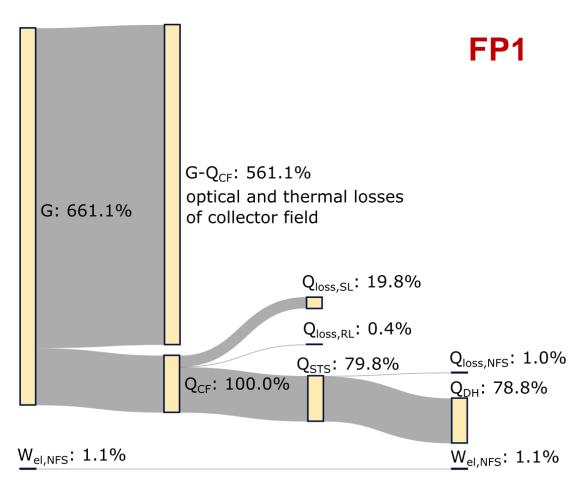
$$COP = \frac{Q_{\rm DH}}{W_{\rm el}} \quad \text{Coefficient of performance,} \quad \text{electrical energy consumption} \quad \text{G KKC}$$

$$\dot{Q}_{\rm CF, theo} = \dot{G} \cdot A \cdot \eta_{\rm th} \quad \text{or behalf of}$$
THE 16th INTERNATIONAL SYMPOSIUM

Boundary Conditions

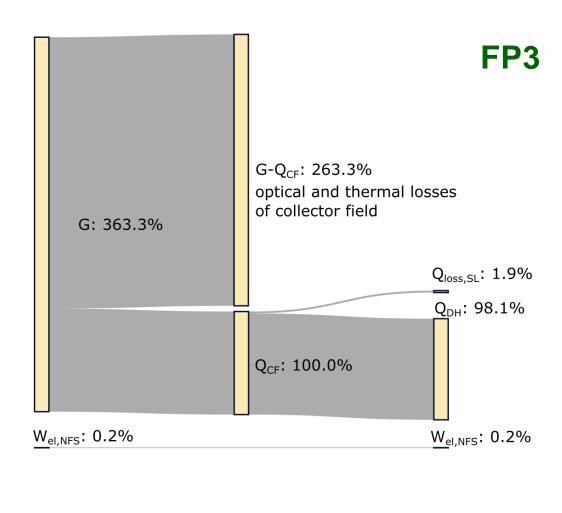
- Week in May 2018, four days sunny, two cloudy, one unsettled
- Similar weather conditions for both plants (6.3 km away from each other)
- Feed-in setpoint temperature of 110°C (FP1) vs. 65°C (FP3)


Date	Weather		FP1	FP3
parameter	$G_{ m h}$	$ar{T}_{a}$	$ar{T}_{ ext{SL,DH}}$	$ar{T}_{ ext{SL,DH}}$
considered during	day	feed-in	feed-in	feed-in
unit	kWh/m²/d	°C	°C	°C
10.05.18 (Start 00:00)	7,3	25	108	69
11.05.18	5,2	19	103	68
12.05.18	6,6	22	107	71
13.05.18	7,5	24	107	71
14.05.18	7,6	22	109	72
15.05.18	3,9	18	no feed-in	64
16.05.18 (End 24:00)	2,8	16	no feed-in	66
setpoint temperature			110	65



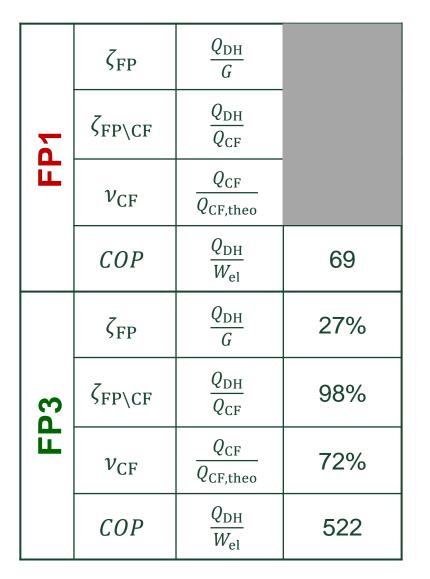
Energy Performance

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling



Energy Performance

	$\zeta_{ m FP}$	$rac{Q_{\mathrm{DH}}}{G}$	12%
FP1	$\zeta_{ m FP \setminus CF}$	$\frac{Q_{\rm DH}}{Q_{\rm CF}}$	79%
	$ u_{\mathrm{CF}}$	$\frac{Q_{\rm CF}}{Q_{\rm CF,theo}}$	49%
	СОР	$rac{Q_{ m DH}}{W_{ m el}}$	69
	$\zeta_{ m FP}$	$\frac{Q_{\rm DH}}{G}$	27%
FP3	$\zeta_{ m FP \setminus CF}$	$rac{Q_{ m DH}}{Q_{ m CF}}$	98%
11	$ u_{\mathrm{CF}}$	$rac{Q_{ m CF}}{Q_{ m CF,theo}}$	72%
	СОР	$rac{Q_{\mathrm{DH}}}{W_{\mathrm{el}}}$	522


THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Energy Performance

Not Representative

for solar thermal feed-in!

Optimization Potential - FP1/FP3

FP1

Problems:

- Fluctuating thermal output
- Thermal output below the theoretically expected output

Solutions:

- Reconstruction of the collector field
 - Commercially available collectors
 - Smaller sized piping (reduced surface area and delay time)

FP3

Problems:

- High deviation to target feed-in temperature
- No switching to RL/SL feed-in mode

- New circulation pump with higher volume flow
- Solve problems in control unit

Conclusions

- The challenging feed-in of solar thermal heat to primary DH network is possible
 - Stable feed-in temperatures during high and volatile pressure differences in DH
 - Reasonable auxiliary energy consumption
- Directly connected centralized feed-in plant with good energy efficiency
- Methodology for the energy performance analysis and comparative evaluation of solar thermal systems connected to DH applied
- Two further feed-in plants will be investigated in the SOLSTAND project
- General recommendations for standardization of DH network substation concepts will be derived

Thank you for your attention!

Chair of Building Energy Systems and Heat Supply

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Heymann | Feed-in Plants SOLSTAND | Slide 25

🖸 Kirsten Lassig

Nomenclature

Symbols		Abbreviations/Indices		
A	m^2	Area	a	Ambient
a_1, a_2	W m ⁻² K ⁻¹ ,	Collector parameter	Col	Collector
	$W m^{-2}K^{-2}$		С	Collector subfield
COP	-	Coefficient of performance	CFi	Collector Field
Ġ	W m ⁻²	Global irradiation in collector plane	DH	District heating
G	kWh m ⁻²	Sum of global irradiation in collector plane	el	Electrical
G_h	kWh m ⁻²	Sum of global irradiation horizontal	F	Feed-in
Ĥ	kW	Enthalpy flow rate	FPi	Feed-in plant
i	-	Number of feed-in plant (1,2)	FS	Flow Sensor
'n	kg s ⁻¹	Mass flow rate	HM	Heat meter
			loss	Losses
p	bar	Pressure (absolute)	LP	Lowest point in system
Δp	bar	Pressure difference	NFSi	Network feed-in substation
Р	kW	Power	PM	Pressure maintenance
Q	kWh	Heat, thermal energy	LP	Lowest point in system
Q	kW	Heat flow, thermal capacity	Pu	Pump
W	kWh	electrical energy	RL	Return line
ζ	-	Efficiency (average in time)	SL	Supply line
η_0	-	Optical collector efficiency	STS	Solar thermal system
ν	-	Degree of quality	th	Thermal
τ	hh:mm:ss	Time	theo	Theoretical
			VTC	Vacuum tube collector

