ImpactGas: Experimental Investigation of Plate Heat Exchangers

Effects of Atmospheric Gases on the Efficiency of Heating and Cooling Supply Components

Martin Heymann, Franziska Koch, Karin Rühling, Contact: Tel.: +49-351 / 463-34440; martin.heymann@tu-dresden.de

Are Gases a Problem?

It is widely known that the atmospheric gases N_{2} and O_{2} affect the operational safety and service life. These gases enter the systems, e.g. due to a lack of These gases enter the systems, e.g. due to a lat
care during commissioning or maintenance, care during commissioning or maintenance,
circulate there and impair the function of the main circulate there
components.

But how serious is the effect on efficiency?

- Pressure losses (auxiliary energy demand)
- Heat transfer (efficiency or COP)

Concept/Methodic

The experiments took place at the ImpactGas component test stand (see Fig. 1 and 2). The gas free Reference Circuit serves as the heat source for the Test Circuit. Tempered water circulates in both circuits as heat transfer medium. A bubble flow with a defined gas volume fraction ε can be generated via Gas Admission II (cf. Fig. 3).

A Test Case (TC) always refers to the associated gas free Reference Case (RC) and the related pressure free Reference case lond and the related heat transfer coefficients are losses and the related heat transfer coefficients formed. Since test boundary conditions do not correspond exactly with regard to volume flow and temperature, an empirical model was created on
the basis of the measurement data of the gas-free the basis of the measurement data of the
Reference Cases. This is used to map the
corresponding Reference Case for each Test Case.

References
ImpactGas
$\begin{array}{ll}\text { ImpactGas } & \text { Research project, FRN: 020E-100362657, research partners } \\ \text { Hochschule Z Zittau/Görlitz and Fraunhofer IFAM Dresden }\end{array}$

Effects on Pressure Loss

The results for the related pressure loss and an operating condition without heat supply ($25^{\circ} \mathrm{C}$) are shown in Fig. 4. Here the gas volume fraction can be assigned by color and the volume flow by symbol. The derived regressions appear in Fig. 5 for all test objects and temperature levels.

The following simple approach can be derived with the assumption that the pressure loss coefficients, formed with effective fluid properties, depend primarily on the geometry and surface properties of the duct walls. It meets the measurement well.

$$
\frac{\Delta p_{f}}{\Delta p_{f, R C}}=\frac{\zeta}{\zeta_{\mathrm{RC}}} \cdot \frac{1}{1-\varepsilon} \approx \frac{1}{1-\varepsilon}
$$

The pressure losses increase by about one percentage point per volume percent of gas.

[^0]Effect on Heat Transfer

The results for the related heat transfer $k / k_{R C}$ are shown in Fig. 6 for all test objects and temperature levels.

The measurements cannot prove an influence of free gases on the heat transfer.

Averaged over all volume flows, all regression lines show a gradient close to zero. With a gas volume fraction of 6%, maximum deviations in the range of $\pm 0.2 \%$ are to be expected.

Effects on Entire System

Effects of the free gases on thermal heating systems are manifold and depend on the control

 concept used.In Scenario 1, the control system will try to continue to fulfil the supply task despite a disturbance by free gases. For example, it will increase the heat capacity rate via the pump speed to such an extent, that the target temperature and thus the necessary transmission capacity are reached. The results shown above apply.
In Scenario 2, the control system cannot compensate for the disturbances caused by the free gases. This can be the case, for example, if the free gases. This can be the case, for example, if the
system is already working close to the maximum point or the control only takes into account point or the control only takes into account
environmental influences but not process variables. In this case, the total volume flow remains the same, but the heat capacity rate decreases. For this scenario the flow pressure losses and the heat transfer decrease accordingly due to the lower water volume flow.

TU Dresden

[^0]: Fig. 4: Related pressure drop $\Delta p_{f} / \Delta p_{f, R, \text {, }}$ in test object Hex 40 depending on Related pressure drop $\Delta p_{f} / \Delta p_{f, R,}$, all heat exchanger test objects and temperature pairings Related heat transfer coefficient $k / k_{R C}$, all heat exchanger test
 objects and temperature pairings

