Differential Impacts of Additional Consumers in DH Systems

Analysis for Absorption Chillers

11 September 2018

Felix Panitz, Vera Volmer **Technische Universität Dresden**

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Impacts of Absorption Chiller (ACh)

subject matter:

- new generation of ACh (return temperatures 60...70 °C) ۲
- field installations in several district heating systems
- Effects in DH system / relevance of return temp. are discussed but not quantified \bullet

Impacts of Absorption Chiller (ACh)

- Goal: \rightarrow estimation of all effects of ACh in DH system
 - \rightarrow total primary energy effort of ACh
- Approach: \rightarrow all additional efforts are allocated to the ACh
 - \rightarrow DH system is not changed (no pipes enlarged, no additional CHP-unit)

Impacts of Absorption Chiller (ACh)

- Goal: \rightarrow estimation of all effects of ACh in DH system
 - \rightarrow total primary energy effort of ACh
- Approach: \rightarrow all additional efforts are allocated to the ACh
 - → DH system is not changed (no pipes enlarged, no additional CHP-unit)

Network simulations

Supply Station / ambient temperature	CHP1+2 / -14°C	CHP1+2 / +1°C	CHP1 / +15°C	CHP1 / +30°C	CHP2 / +30°C
Supply temperature at heat generator	120 °C	92 °C	92 °C	92 °C	92 °C
Return temperature at heat generator	60 °C	58 °C	60 °C	64 °C	64 °C
Thermal load	637 MW	394 MW	105 MW	39 MW	38 MW

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Summer load case (CHP2 / +30°C)

|--|

Heat loss without ACh	11,573 kW
Heat loss with ACh	11,594 kW
Difference $\Delta \dot{Q}_{L}$	21 kW
Relative increase of heat loss	+0.18 %

Specific loss ACh:

(0) —	$\Delta \dot{Q}_{\rm L}$ _	21 kW	= 12 1 %
Ψ L,ACh –	$\dot{Q}_{ ext{Con,ACh}}$	175 kW	- 12.1 /0

Specific loss average consumer (without ACh):

$$\varphi_{\text{L,avg}} = \frac{\dot{Q}_{\text{L}}}{\Sigma \dot{Q}_{\text{Con},i}} = \frac{11,573\text{kW}}{26,021\text{kW}} = 44.5\%$$

- Additional heat loss is small compared to overall heat loss ۲ → therefore: **specific values** are used!
- Specific heat loss of ACh is lower than average
 - \rightarrow specific overall heat loss with ACh are slightly lower (44.3 %)

Effects on thermal losses

→ Specific heat losses caused by ACh are smaller than those of average consumer! (despite high ACh return temperature)

Effects on thermal losses

Effects on pumping electricity

- Specific pumping electricity of ACh is higher than network average
- Hydraulic effects can not be neglected!

Effects on pumping electricity

• New ACh generation with lower return temperatures can reduce pumping electricity especially in transitional season

Conclusion: network effects

- Additional heat losses are low, Additional pumping electricity is relevant
- Drop of return temp. (77 \rightarrow 68 °C) strongly reduces heat and electricity demand ۲
- Do equal simulations for long-term strategy DH temperatures!

Impact on heat generation

- CHP and boiler: estimate additional power generation and fuel demand
- key figures to characterize additional heat generation needed:

Diff. CHP share: $x_{\text{CHP,ACh}} = \frac{\Delta Q_{\text{CHP}}}{\Delta Q_{\text{CHP}} + \Delta Q_{\text{Boiler}}}$ Diff. CHP coefficient:

 $\sigma_{\rm CHP,ACh} = \frac{\Delta W_{\rm CHP}}{\Delta Q_{\rm CHP}}$

Heat generator set-up

Construed example (data security reasons):

- Mode of operation has high impact on key figures!
- How to create realistic operation sequence?
- \rightarrow Optimization of generator operation: minimize total operating costs
 - A: Simulation without ACh
 - B: Simulation with ACh, 175 kW

Effects of ACh = difference B - A !

Network

year: 2016

Simulation periods: 4 x 1 week

year: 2016

winter I winter II spring summer Week 20 27 2 8 \bar{t}_{a} -1.6 °C 2.3 °C 14.1 °C 21.5 °C $\bar{\dot{Q}}_{\mathrm{Gen}}$ 39.7 MW 33.2 MW 15.4 MW 7.5 MW 61.1 % 51.1 % 11.6 % Load percentage 23.7 %

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Characteristic key figures

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Characteristic key figures

Characteristic key figures

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Primary energy: generated heat

Primary energy factor of ACh is higher than average consumer's value

\rightarrow ACh increases primary energy factor of network

Results may vary widely with different heat generation and heat load constellations!

Impact on heat generation

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Evaluation of overall system

 \rightarrow Combination of network effects (load points) and optimization (week simulations)

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Evaluation of produced cold

- ACh has better primary energy efficiency than compression chiller in summer
- Effects of lower ACh return temperature look small but primary energy factor can be lowered by about 0.1 to 0.15

Conclusion

- Method developed for quantifying effects of additional ACh ۲
- In given example:
 - Add. heat losses are small, add. pumping electricity can not be neglected
 - Comparison to compression chiller: ACh has better primary energy efficiency (only) in summer
 - Heat generation set-up and operation have big influence on primary energy efficiency
- Results can not be generalized!
- DH companies can use presented method to evaluate ecological and economic sense of ACh in existing systems

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Thank you for your attention!

Project: **EnEff: Wärme – Feldtest Absorptionskälteanlagen für KWKK-Systeme** Research project founded by the Federal Ministry for Economic Affairs and Energy following a resolution of the German Bundestag FKZ: 03ET1171B

Contact:

Vera Volmer, Felix Panitz

+49 351 463 34477

vera.volmer@tu-dresden.de, felix.panitz@tu-dresden.de

Technische Universität Dresden

Institute of Power Engineering

Chair of Building Energy Systems and Heat Supply

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

Panitz, Volmer | Diff. Impact of Consumers | Slide 23

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Evaluation of add. consumer heat

• Combination: Network effects + key figures of heat generation

- ACh values higher than those of average consumer
- Highest primary energy factors in winter to spring

Network effects

For different ACh return temperatures

Network effects

For different ACh installations

P-Q-diagram of evaluated CHP plant

THE 16th INTERNATIONAL SYMPOSIUM on District Heating and Cooling

