EPR™ Safety in the post-Fukushima context

October 19th 2011

Jürgen Wirkner, Peter Volkholz
An accident is a complex series of events:

- NEED THE MEANS TO REMAIN IN CONTROL OF THE SITUATION, WHATEVER HAPPENS

The EPR™ reactor is designed to resist exceptional events and prevent damage to the surroundings.
AREVA Safety Alliance framework

Imperative 1

RESISTANCE TO MAJOR HAZARDS

EVENT:
External hazard: Earthquake, Flooding, Extreme Temperature
Internal hazard: broken pipe or valve, fire
Combination of hazards

OBJECTIVES:
Preserve plant safety

Imperative 2

ROBUSTNESS OF COOLING CAPABILITY

EVENT:
External hazards beyond plant design (worst case scenario)

CONSEQUENCE:
Damage to cooling capability

OBJECTIVES:
Provide sufficient time to restore cooling capability
Avoid cliff edge effects (fuel damage) in reactor (incl. pools)
Preserve assets

Imperative 3

PREVENTION OF ENVIRONMENTAL DAMAGE

EVENT:
Unforeseen event(s) creating extreme conditions

CONSEQUENCE:
Loss of safety functions, leading to hydrogen production, and fuel damage.

OBJECTIVE:
Minimize external radioactive release
Resistance to major hazards

Robustness of cooling capability

Prevention of environmental damage

EPR™ Safety

Imperative 1

RESISTANCE TO MAJOR HAZARDS

EVENT:
- External hazard: Earthquake, Flooding, Extreme Temperature
- Internal hazard: broken pipe or valve, fire
- Combination of hazards

OBJECTIVE:
- Preserve Plant Safety
Structural resistance

- APC shell & earthquake resistance
- Doors designed to resist external explosions & floods

Design robustness: the EPR™ design can be compliant with a vast variety of sites

1- Air Plane Crash resistant Shell
Equipment resistance process

- A rigorous process to ensure equipment resistance

- Definition of requirements
 E.g. for earthquakes calculation, acceleration relative to each component

- Testing components
 - Heavy components
 - Mechanical components: CRDM, valves, pumps
 - I&C and Electrical equipments…

E.g. For earthquake resistance, AREVA has several testing facilities
Monitoring and control of the plant

Monitoring systems

- 300+ safety-class monitoring systems in the NSSS:
 - Resistance to extreme conditions: high radiation, temperature and pressure
 - Monitoring still functional in case of an earthquake

Control Room

- Main control room
 - In APC-protected safeguard building
 - Digital I&C backed-up by diversified system with qualified displays
- Back-up: Remote Shutdown station
 - Geographical and technological diversity

Design robustness: in case of major hazards, monitoring and control functions of the EPR™ design are preserved
Resistence to major hazards

Robustness of cooling capability

Prevention of environmental damage
The EPR is licensed to resist to a 0.25g-0.3g peak ground acceleration.

Seismic Margin Assessments performed for safety authorities in the UK and US show that even a 0.6g peak ground acceleration earthquake would not have significantly impacted the EPR capabilities to prevent the risk of severe accident.

In similar seismic conditions as of Fukushima earthquake, the EPR would not have endured damages impairing the adequate operations of its safety systems.

EPR is certified\(^1\) to resist to a large spectrum of peak ground acceleration levels.

Earthquake resistance requirements of safety authorities per project.

In similar seismic conditions as of Fukushima earthquake, the EPR would not have endured damages impairing the adequate operations of its safety systems.

1. Construction license
2. Safety demonstration adjusted to Finnish requirements however most equipments in line with EPR standard seism resistance

Source: Project construction licenses and ongoing certification processes
Robustness of cooling systems

Four 100% safety trains

- 4 safety trains located in 4 dedicated safeguard buildings
- 2 safeguard buildings are further protected by the APC shell
- One train is enough to cool the core (“100% train”)

Highly redundant cooling systems with two ways to cool down the core

1. Emergency feedwater system
 - Cooling through secondary loop with EFWS

2. Safety injection system
 - Cooling through primary loop with safety injection system

1- Emergency FeedWater System 2- In-containment Refueling Water Storage Tank
Robustness of cooling capability
Water supply

The EPR™ design has multiple redundant and diverse access to water to cool the core

In case of loss of main heat sink access ①, the EPR™ reactor can rely:

► On an alternate heat sink source ② (against floods or earthquakes…)

► On significant protected water reserves:
 ► four EFWS² tanks ③ in the safeguards buildings
 ► a large fire fighting tank ④
 ► the IRWST³ ⑤ in the reactor building

1- or geographically diversified access for seaside sites 2- Emergency FeedWater System 3- In-containment Refueling Water Storage Tank
Robustness of cooling capability

Emergency power

Physical protection

Physical separation

Redundancy & diversification

- Diesel & fuel tanks housed in reinforced concrete buildings
 - Earthquake resistant design
 - Doors designed to resist external explosions & floods

- 2 separate buildings located on each side of the reactor building
 - Deterministically impossible for both of them to be damaged by an external impact hazard (explosion, airplane crash…)

- Four main 100% redundant diesels: each with 72 hours autonomy at full load
- Two additional station blackout diesel generators (SBO): Fully diversified with 24 hours additional autonomy each
- Batteries: 12h autonomy for critical systems

6 emergency diesels plus batteries: redundant, diversified and protected

1- 24h for OL3/FA3, autonomy dependant on site specific assessment
Robustness of cooling capability

The core can be cooled using only one diesel generator, one safety train and without external heat sink

Multiple cooling systems

Multiple water supply sources

Multiple emergency power sources

High robustness of cooling systems: redundancy, diversity, complementarity at all stages

1. Emergency FeedWater System
2. In-containment Refueling Water Storage Tank

4 safety trains

IRWST\(^2\) (1800 m\(^3\))

EFWS\(^1\) tanks (4x400 m\(^3\))

Fire fighting tank (2600 m\(^3\))

Alternate heat sink

2 x 3 emergency diesels
Reactor fuel pool robustness

- **Dedicated fuel building**
 - Reinforced concrete wall
 - Additional protection layer by the APC shell

- **Cooling systems**
 - Redundancy of the main system: two independent, physically separated cooling trains
 - Diversity:
 - Additional back-up cooling system
 - Make-up by firefighting tank

High robustness of cooling systems: also for the reactor fuel pool
Increased safety margins are needed for prevention of potential **cliff edge effects** (events beyond safety limits with non-linear consequences)

This means an **NPP must not enter into a severe accident sequence as soon as the site worse case scenario is exceeded** and have safety margins/ cooling robustness providing a “grace period” to prevent the cliff-edge effect.
The significant grace period provides more time to bring mobile emergency means and prevent cliff-edge effect.

The robustness of the cooling chain means less accumulated heat during the initial phase. It enables to manage extraction of the decay heat even with limited mobile means.

For water, the mobile means can refill reserves at many different points (any EFWS¹ tank, fire fighting tank...)

Decay heat

A firefighting truck pump is enough for water supply from t+24h on.
- Resistance to major hazards
- Robustness of cooling capability
- Prevention of environmental damage
Prevention of environmental damage

However low the probability of severe accident for the EPR™ design, consequences around the site are too severe to be ignored.

Deterministic approach for severe accident mitigation

▸ To prevent containment breach and subsequent environmental damage:

1. Prevent highly energetic events,
 ◆ No high pressure core melt
 ◆ No H2 explosion
 ◆ No steam explosion

2. Achieve long-term core melt stabilization
Prevention of environmental damage
No high pressure core melt

Core melting at high system pressure can potentially lead to loss of containment integrity and major melt dispersal.

The EPR™ design includes additional dedicated primary depressurization valves.

Primary loop depressurization
Pressurizer safety valves
Dedicated severe accident depressurization valves (2 x 2 valves)
Prevention of environmental damage
No H2 explosion

Minimize H2 concentration:
Large reactor building with interlinked compartments

Reduce H2 quantity:
Passive Autocatalytic Recombiners
Prevention of environmental damage
No steam explosion

- The EPR™ manages core melt with the core catcher
- Ex-vessel steam explosions can occur when melt pours into a water pool
- With the core catcher, the presence of water is excluded by design
 - In the reactor pit
 - In the core catcher before spreading
- No steam explosion possibility
Prevention of environmental damage
Long-term core melt stabilization

Short-term cooling

The Core catcher protects the integrity of the containment basemat. It is designed to passively stabilize molten core:
- Passive valve opening
- Gravity-driven overflow of water

Long-term cooling

- Long-term core cooling is provided by the containment spray
- The grace period provided by the passive short term cooling allows ample time to recover active systems and ensure long-term stabilization

Complementarity of active and passive systems for severe accident management
Wrap-up

- Major hazards and ensuing chain of events are always complex, robust cooling systems working in situations beyond design-base scenarios are mandatory.

- Severe accident mitigation is addressed in a deterministic way. Probabilistic approach is appropriate to assess global design safety but is not used to cut costs.

- The EPR is a robust design, the Fukushima accident has validated AREVA’s Safety approach:
 - Resistance to major hazards
 - Robustness of cooling capability
 - Prevention of environmental damage
AREVA Safety Alliance framework

Imperative 1

RESISTANCE TO MAJOR HAZARDS

EVENT:
External hazard: Earthquake, Flooding, Extreme Temperature
Internal hazard: broken pipe or valve, fire
Combination of hazards

OBJECTIVES:
Preserve plant safety

Imperative 2

ROBUSTNESS OF COOLING CAPABILITY

EVENT:
External hazards beyond plant design (worst case scenario)

CONSEQUENCE:
Damage to cooling capability

OBJECTIVES:
Provide sufficient time to restore cooling capability
Avoid cliff edge effects (fuel damage) in reactor (incl. pools)
Preserve assets

Imperative 3

PREVENTION OF ENVIRONMENTAL DAMAGE

EVENT:
Unforeseen event(s) creating extreme conditions

CONSEQUENCE:
Loss of safety functions, leading to hydrogen production, and fuel damage.

OBJECTIVE:
Minimize external radioactive release