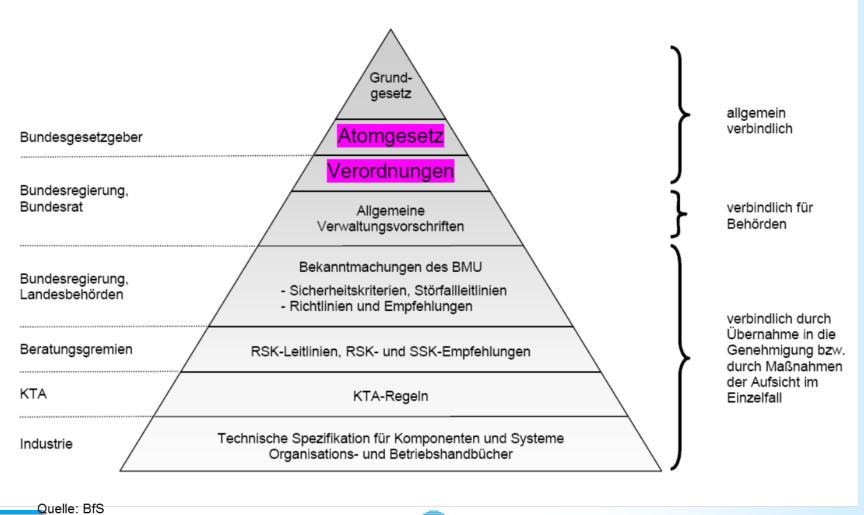


# Bevorstehende Herausforderungen beim Rückbau kerntechnischer Anlagen

Dr. Aldo Weber




#### Gliederung

- Rechtliche Rahmenbedingungen
- Stilllegungsstrategien
- Phasen der Stilllegung
- Reaktortypen in Deutschland
- Massen- und Aktivierungsanalyse
- Rückbautechniken
- Kurzes Fazit
- Herausforderungen Deutschland

## Rechtliche Rahmenbedingungen

#### Rechtliche Rahmenbedingungen / Genehmigungsverfahren



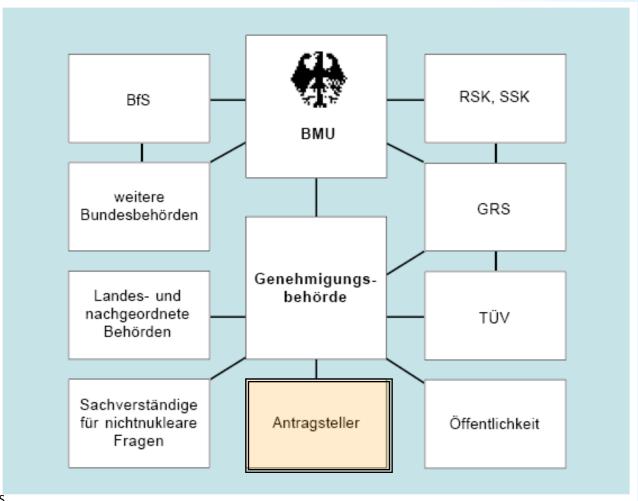
#### Rechtliche Rahmenbedingungen

#### **Atomrechtliches Genehmigungsverfahren**

#### Leitfaden Stilllegung:

(Leitfaden zur Stilllegung, zum sicheren Einschluss und zum Abbau von Anlagen oder Anlagenteilen nach § 7 des Atomgesetzes)

#### Ziel des Leitfadens ist


- die bei der Genehmigung und Aufsicht relevanten Aspekte zusammenzustellen
- ein gemeinsames Verständnis von Bund und Ländern zur zweckmäßigen Durchführung von Stilllegungsverfahren anzustreben
- die bestehenden Auffassungen und Vorgehensweisen zu harmonisieren

Quelle : GRS



#### Rechtliche Rahmenbedingungen

#### Atomrechtliches Genehmigungsverfahren



#### Stilllegungsstrategien

International gibt es im Wesentlichen drei Strategien:

- Unmittelbarer Rückbau
- Rückbau nach einem sicheren Einschluss
- "Entombment" (permanenter Einschluss z.B. durch eine Betonhülle)

In Deutschland stehen nur die beiden ersten Strategien zur Verfügung (§ 7 Abs. 3 AtG)



#### Stilllegungsstrategien

- Entscheidung, welche Strategie angewendet wird, liegt beim Betreiber
- Faktoren für Strategiewahl, z.B:
  - Gesetzliche Rahmenbedingungen zum Zeitpunkt der Stilllegung
  - Beschaffenheit der Anlage, Umfang des radioaktiven Inventars
  - Entsorgung radioaktiver Abfälle einschl. Zwischen- und Endlagerung
  - Sicherung der Finanzen
  - Vorhandensein von erfahrenem Personal und erprobter Stilllegungstechniken
  - Erfahrungen aus früheren Stilllegungsprojekten
  - Aspekte des Umweltschutzes und sozialökonomische Belastungen
  - Nutzung des Geländes bzw. der Anlage(nteile) nach Abschluss der Stilllegung
- Zurzeit bevorzugte Strategie ist der "Unmittelbare Rückbau"
   (z.B. KKW Würgassen, Stade, Mühlheim-Kärlich, Obrigheim, Wiederaufarbeitungsanlage Karlsruhe)



#### Phasen der Stilllegung

## Übergang vom Betrieb zur Stilllegung/Rückbau:

- Betriebsphase
- Nachbetriebsphase
- Rückbauphase

#### Phsen der Stilllegung





#### Phasen der Stilllegung

- Phase 1: Vorbereitung und Rückbau kontaminierter Komponenten
  - Abisolieren Außerbetriebnehmen Stillsetzen von Systemen
  - Einrichten von Materialbehandlungsplätzen und Zwischenlager
  - Rückbau nicht mehr benötigter Systeme
- Phase 2: ➤ Rückbau von Großkomponenten
  - Dampferzeuger
  - Primärkühlmittelleitungen
  - Primärkühlmittelpumpen
  - Druckhalter
- Phase 3: Rückbau aktivierter Komponenten
  - > Reaktordruckbehälter mit Einbauten
  - Biologischer Schild
- Phase 4: Restdemontage sowie Gebäudedekontamination und -freigabe
  - Rückbau der restlichen Systeme (z.B.: Abwasser-und Abluftanlagen)
  - Gebäudedekontamination und -freimessung

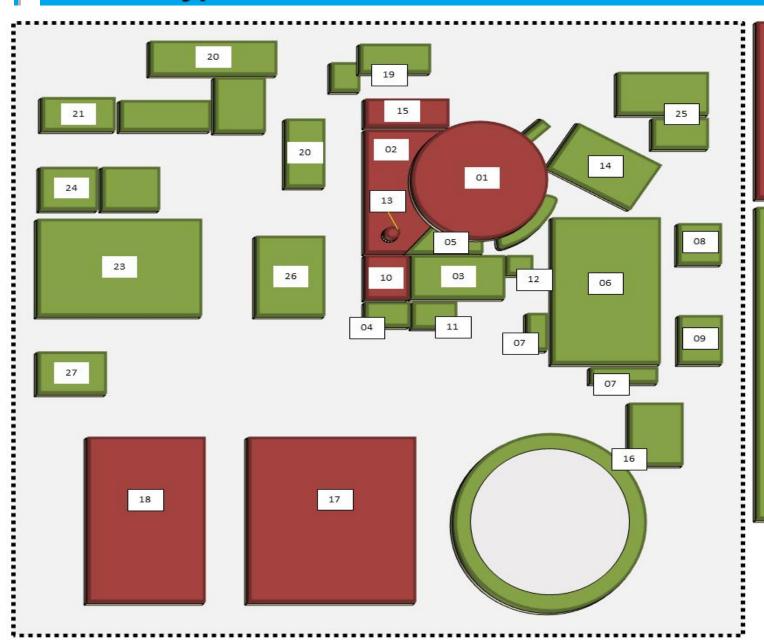
Parallel zu den o.g. Phasen erfolgt der Rückbau der nicht nuklearen Anlagen . Abgeschlossen wird die Stilllegung mit dem Abriss der Gebäude und der Rekultivierung des Geländes ("Grüne Wiese ").



#### Leistungsreaktoren Deutschland

#### Kernkraftwerke:

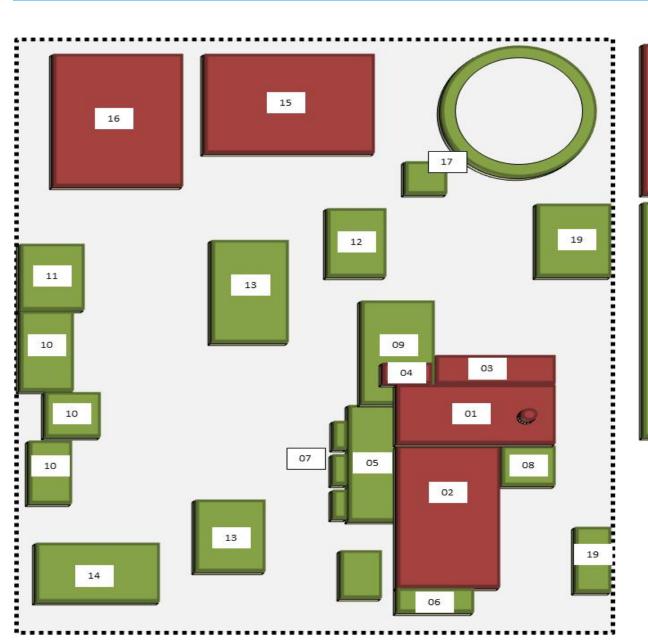
Bei den kommerziellen Kernkraftwerken in Deutschland unterscheidet man zwei Reaktortypen:


Druckwasserreaktoren (DWR), z.B.

| KWB-A und B, Biblis | abgeschaltet |
|---------------------|--------------|
| ➤ KKI-2, Isar       | in Betreib   |
| > KKS, Stade        | im Rückbau   |

- Siedewasserreaktoren (SWR), z.B.

| KKP-1, Philippsburg        | abgeschaltet |
|----------------------------|--------------|
| KRB-B und C, Gundremmingen | in Betrieb   |
| KWW, Würgassen             | im Rückbau   |


## Reaktortypen - DWR



Reaktorgebäude 01 02 Hilfsanlagengebäude 10 Abwasseraufbereitung, Konzentratbehandlung 13 Fortluftkamin 15 Heiße Werkstatt Transportbereitstellung 17 Endlagerbehälter 18 Standortzwischenlager Brennelemente

03 Schaltanlagengebäude 04 Notstromdieselgebäude 05 Notspeisegebäude Maschinenhaus 06 Trafoanlagen 07 08 Kühlwasserentnahme 09 Kühlwasserrückgabe 11 Wasseraufbereitung Hilfskesselgebäude 12 Notstandsgebäude 14 Kühlturm und Pumpenhaus 16 19 Empfang / Pforte 20 Verwaltungsgebäude 21 Sozialgebäude 23 Lagergebäude 24 Lagergebäude 25 Werkstätten 26 Sozialgebäude Feuerwehrgebäude 27

## Reaktortypen - SWR



01 Reaktorgebäude mit Aufbereitungstrakt
Und Fortluftkamin
02 Maschinenhaus
03 Feststofflager, Dekontraum
04 Heiße Werkstatt
15 Standortzwischenlager Brennelemente
16 Transportbereitstellung Endlagerbehälter



# Reaktortypen - Massen

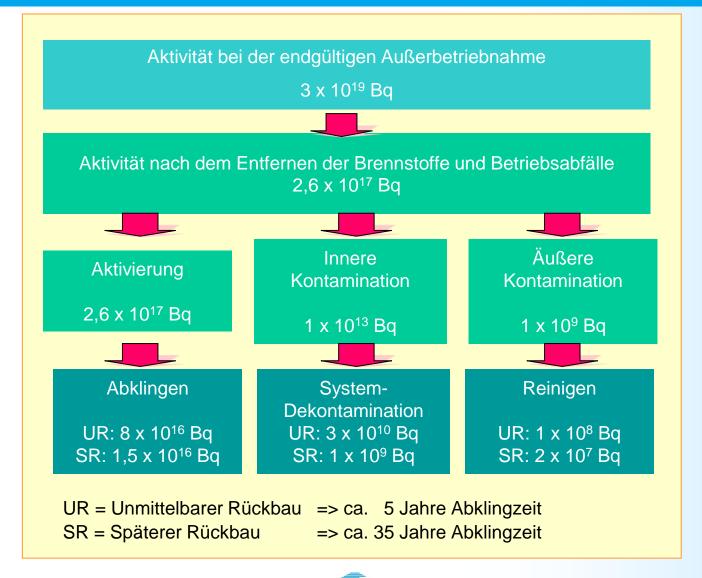
**Abzubauende Masse Gesamtstandort** 

~ 700.000 / 500.000 Mg

| Reaktortyp         | Kontrollbereich            |                           |               |
|--------------------|----------------------------|---------------------------|---------------|
|                    | Masse<br>Einbauten<br>[Mg] | Gebäude-<br>masse<br>[Mg] | Summe<br>[Mg] |
| Druckwasserreaktor | 13'500                     | 143'000                   | 156'500       |
| Siedewasserreaktor | 33'100                     | 160'500                   | 193'600       |



# Reaktortypen - Massen


**Abzubauende Masse Gesamtstandort** 

~ 700.000 / 500.000 Mg

| Radioaktive Reststoffe |           |           |  |
|------------------------|-----------|-----------|--|
| DWR SWR                |           |           |  |
|                        |           |           |  |
| Einrichtungen          | 13.320 Mg | 22.360 Mg |  |
| Betonstrukturen        | 25.940 Mg | 26.000 Mg |  |
| Sonstiges              | 740 Mg    | 780 Mg    |  |
|                        |           |           |  |



#### Rückbau - Aktivität



# Rückbau – Aktivität / Freigabe

| Entsorgungsweg |                                                       | Masse [Mg] |        |
|----------------|-------------------------------------------------------|------------|--------|
|                |                                                       | DWR        | SWR    |
| Pfad A         | Freigabe, uneingeschränkt                             | 22.300     | 28.650 |
| Pfad B         | Freigabe zur Beseitigung                              | 11.800     | 12.720 |
| Pfad C         | Pfad C Abklinglagerung*                               |            | -      |
| Pfad D         | Verwertung / Verwendung<br>im kerntechnischen Bereich | 1.310      | 2.240  |
| Pfad E         | Endlagerung als<br>radioaktiver Abfall                | 4.590      | 5.530  |
|                | Gesamtmasse:                                          | 40.000     | 49.140 |



#### Rückbau - Messverfahren



Geeignete Messverfahren werden benötigt für:

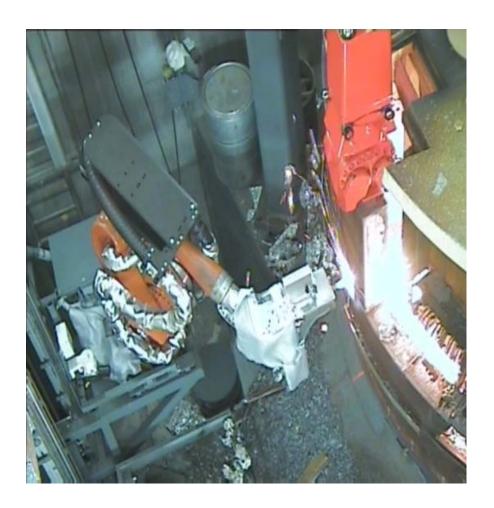
- Freigabemessungen demontierter Reststoffe
  - Handmessgeräte
  - Freimessanlagen
- Freimessung von Gebäuden
  - > In-situ-Gammaspektrometrie

Anwendbare Verfahren sind in DIN 25457 normiert.

#### Rückbau – Techniken / Verfahren

# Zu den Techniken und Verfahren, die beim Rückbau verwendet werden, zählen:

- Zerlegetechniken / -verfahren
- Dekontaminationstechniken / -verfahren
- Messverfahren zum Nachweis der Einhaltung von Freigabewerten
- Konditionierungsverfahren zur Behandlung von radioaktiven Abfällen

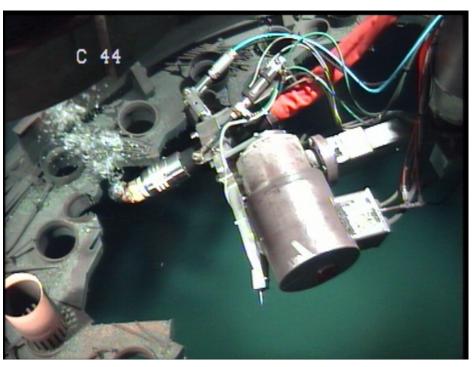

Heute sind zahlreiche Techniken und Verfahren verfügbar. Sie haben sich für bestimmte Anwendungsfälle im Rahmen von Stilllegungsprojekten bewährt.

#### Rückbau - Zerlegetechniken

#### Man unterscheidet:

- Thermische Verfahren, z.B.
  - Autogenes Brennschneiden
  - Plasmaschmelzschneiden
  - Laserschneiden
- Mechanische Verfahren, z.B.
  - Bügel, Stich -, Kreis -, Bandsäge
  - DiamantSeilsäge
  - Trennschleifen
  - Wasserabrasivstrahl-Schneiden
  - Presslufthammer, Sprengen (Beton)

## Rückbau – Thermisches Schneiden

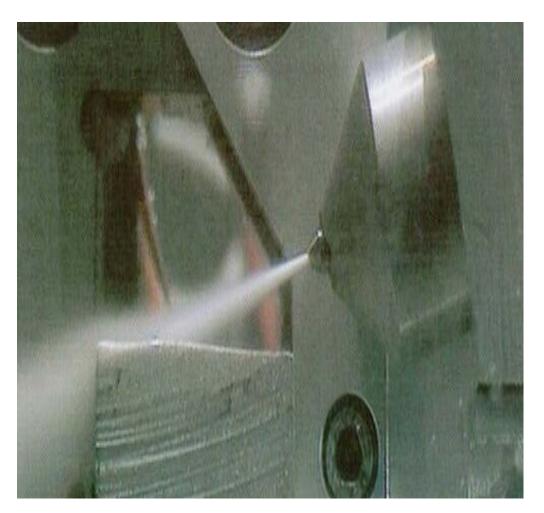



| Vorteile                                                               | Nachteile                                                                                     |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Verschleißteilkosten gering                                            | Kein Schneiden von     Edelstählen                                                            |
| Allgemein geringere<br>Investkosten                                    | Hoher Wärmeeintrag                                                                            |
| <ul> <li>hohe Flexibilität bei<br/>komplexen<br/>Geometrien</li> </ul> | <ul> <li>geringe Maßhaltigkeit bei<br/>Wiederholschnitten infolge<br/>Wärmeeinfluß</li> </ul> |
|                                                                        | Absauganlage erforderlich                                                                     |

z.B. RDB Stade RDB Zyon



## Rückbau – Plasmaschneidverfahren




| Vorteile                                                                        | Nachteile                                                                   |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| alle elektrisch leitenden     Werkstoffe lassen sich trennen                    | <ul> <li>genaues,<br/>programmierbares</li> <li>Führungswerkzeug</li> </ul> |
| hohe Genauigkeit                                                                | erforderlich                                                                |
| hohe Schnittgeschwindigkeit                                                     | Hohe Wasser- /     Luftverschmutzung                                        |
| Betriebskosten im Vergleich zu<br>anderen Verfahren gering<br>(WASS)            | macht Filteranlagen<br>erforderlich                                         |
| große Maßhaltigkeit bei<br>Wiederholschnitten, geringe<br>wärmebeeinflußte Zone |                                                                             |
| Unterwassereinsatz                                                              |                                                                             |

z.B. MZFR RDB Einbauten



## Rückbau - Wasserstrahlschneiden



| Vorteile                              | Nachteile                                                                          |
|---------------------------------------|------------------------------------------------------------------------------------|
| Kein Wärmeverzug                      | Laut und naß                                                                       |
| Großer Material-<br>und Dickenbereich | Hohe Invest- und     Unterhaltungskosten                                           |
| Keine Nacharbeit                      | Wasserreinigung erforderlich                                                       |
| <ul> <li>Unabhängig von</li> </ul>    |                                                                                    |
| der Wassertiefe                       | Anfall von                                                                         |
|                                       | Abrasivmittel                                                                      |
| Keine                                 |                                                                                    |
| Aerosolbildung                        | <ul> <li>Steifes         Führungswerkzeug             erforderlich     </li> </ul> |

z.B. RDB VAK



# Rückbau - Bandsäge

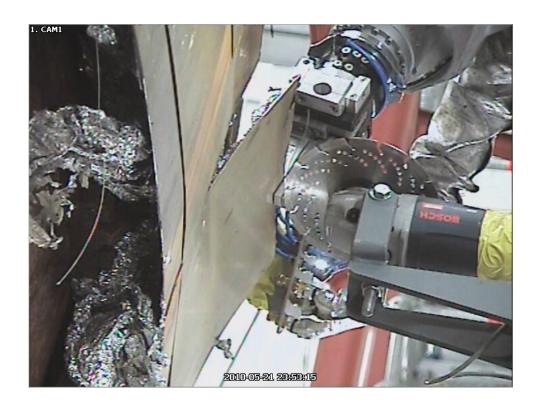


| Vorteile                                                | Nachteile                                                                          |
|---------------------------------------------------------|------------------------------------------------------------------------------------|
| • Robust                                                | Hohe     Rückstellkräfte                                                           |
| <ul> <li>geringe Anforderung<br/>an Bediener</li> </ul> | auf Bauteile                                                                       |
| Unterwassereinsatz                                      | nur für massive     Bauteile                                                       |
|                                                         | <ul> <li>stabiler Aufbau<br/>mit hohem<br/>Platzbedarf<br/>erforderlich</li> </ul> |

z.B. RDB Einbauten Zyon



# Rückbau - Seilsäge




| Vorteile                                      | Nachteile                      |
|-----------------------------------------------|--------------------------------|
| Vielfältig einsetzbar                         | erfahrene     Bediener         |
| <ul><li>Trennen von<br/>Materialmix</li></ul> | erforderlich                   |
| Unterwasser-einsatz                           | manuelles     Einrichten nötig |

z.B. DT Würrgassen, MZFR - Flanschen



## Rückbau - Trennschleifer



| Vorteile                                        | Nachteile                                                            |
|-------------------------------------------------|----------------------------------------------------------------------|
| geringe Anforderung<br>an Bediener              | <ul> <li>Abnutzung der<br/>Trennmittel</li> </ul>                    |
| einfach an     Führungsmaschine     adaptierbar | <ul><li>nur gerade<br/>Schnitte möglich</li><li>definierte</li></ul> |
|                                                 | Orientierung der<br>Rotationsebene                                   |
|                                                 | zum Schnittverlauf notwendig                                         |

z.B. Isolierung Stade



# Rückbau – Hydraulische Schere



| Vorteile                                    | Nachteile                                                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| • schnelles Trennen von Rohrleitungsbündeln | <ul> <li>Hohe Rückstellkräfte auf<br/>das Führungswerkzeug<br/>durch Verkanten der<br/>Schneidblätter</li> </ul> |
| hält das     Zerlegegut selbst     fest     | Hoher seitlicher     Platzbedarf um Schnitt     anzusetzen                                                       |
| Einfach zu     positionieren                |                                                                                                                  |

z.B. Steuerstäbe Greifswald

**Quelle: EWN** 



## Eingehauster Arbeitsbereich RDB-Zerlegung



Fernhantierter Rückbau Stade



# Abfallgebinde für endlagergerechte Entsorgung

| Behälter              | Verpackte<br>Masse | Anzahl Behälter | Endlager<br>volumen  |
|-----------------------|--------------------|-----------------|----------------------|
|                       |                    |                 |                      |
| Stahlblech Typ II     | 1.240 Mg           | 240 St.         | 1.110 m <sup>3</sup> |
| Stahlblech Typ III    | 450 Mg             | 50 St.          | 450 m <sup>3</sup>   |
| Stahlblech Typ IV     | 400 Mg             | 50 St.          | 360 m³               |
| Stahlblech Typ V      | <b>320 Mg</b>      | 55 St.          | 590 m³               |
| Betoncontainer Typ IV | 630 Mg             | 160 St.         | 1.200 m <sup>3</sup> |
| Mosaik Typ II         | 180 Mg             | 640 St.         | 850 m³               |
| Gesamt                | 3.220 Mg           | 1.195 St.       | 4.560 m³             |



- ➤ Rechtliche Rahmenbedingungen √
- Übergang Betrieb Nachbetrieb Rückbau √
- ➤ Rückbautechniken √
- ➤ Endlagergerechte Verpackung √

- ⇒ Rückbau Herausforderung ??
- ⇒ Technik und Erfahrung ist vorhanden!



# Rückbau – Stilllegung Leistungsreaktoren Deutschland

| Anlage              | Nennleistung | Betriebsdauer | Status                |
|---------------------|--------------|---------------|-----------------------|
|                     | MW (brutto)  |               |                       |
| HDR Großwelzheim    | 25           | 1969 - 1971   | vollständig beseitigt |
| KKN Niederaichbach  | 100          | 1972 - 1974   | vollständig beseitigt |
| KWL Lingen          | 268          | 1968 - 1976   | Sicherer Einschluss   |
| KRB-A Gundremmingen | 250          | 1966 - 1977   | Rückbau               |
| MZFR Karlsruhe      | 57           | 1965 - 1984   | Rückbau               |
| VAK Kahl            | 16           | 1961 - 1985   | vollständig beseitigt |
| AVR Jülich          | 15           | 1967 - 1988   | Rückbau               |
| THTR Hamm-Uentrop   | 308          | 1985 - 1988   | Sicherer Einschluss   |
| KMK Mülheim-Kärlich | 1.302        | 1986 - 1988   | Rückbau               |
| KKR Rheinsberg      | 70           | 1966 - 1990   | Rückbau               |
| KGR 1-5 Greifswald  | 5 x 440      | 1973 - 1990   | Rückbau               |
| KNK II Karlsruhe    | 21           | 1977 - 1991   | Rückbau               |
| KWW Würgassen       | 670          | 1971 - 1994   | Rückbau               |
| KKS Stade           | 672          | 1972 - 2003   | Rückbau               |
| KWO Obrigheim       | 357          | 1969 - 2005   | Rückbau               |

Quelle: kernenergie.de



#### Eine Herausforderung ist die Wahl der Rückbaustrategie

#### Entscheidungen des Betreibers

- mögliche Stilllegungsvariante
- Art der Genehmigung / Genehmigungen
- verschiedene Aspekte der Durchführung, wie z.B.:
  - Grad des Einsatzes von Spezialfirmen
  - Umfang der Systemdekontamination
  - Grad der Reststoffbearbeitung und Konditionierung vor Ort
  - Reihenfolge der Demontage
- Umfang der Zwischenlagerung vor Ort
- Endzustand des Anlagenstandortes



#### **Eine weitere Herausforderung sind**

- Wirtschaftliche/Strahlenschutz Aspekte
  - Möglichst schneller Rückbaus
  - Geringe Strahlenexposition
  - Geringes Abfallvolumen
  - Geringe Betriebskosten
  - **>** ...

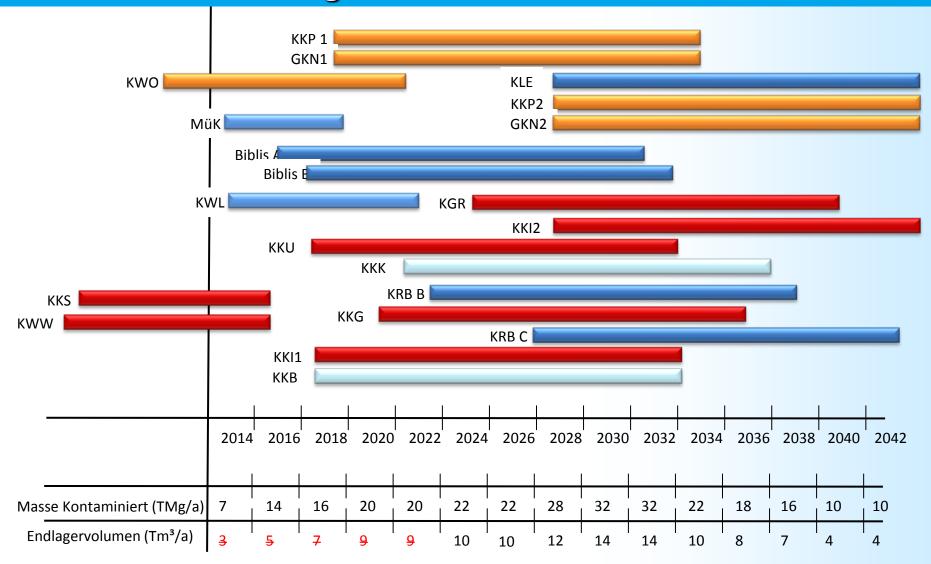


Bisherige Betrachtung hat nur den Rückbau eines Leistungsreaktor berücksichtigt

➤ Hier sind die Herausforderungen bekannt und beherrschbar

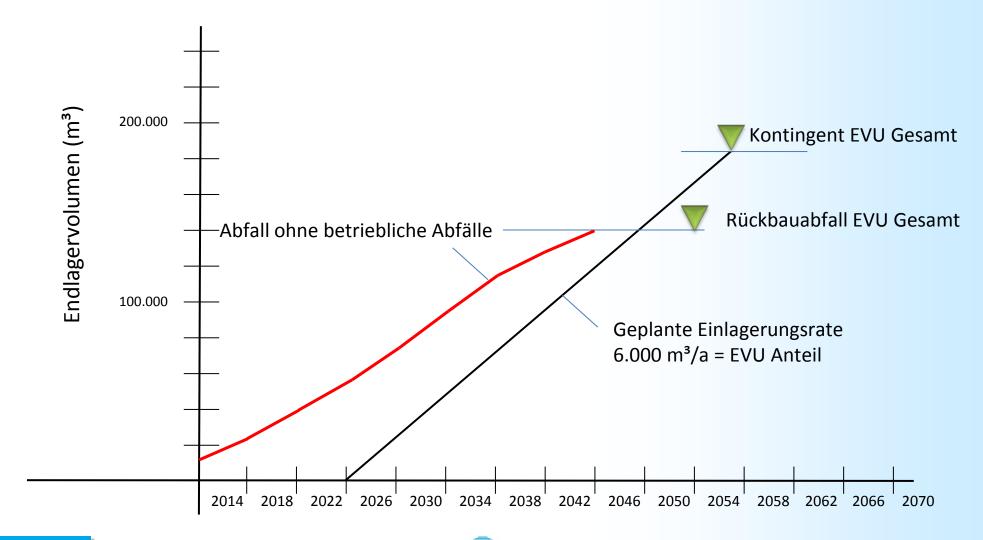
Wie sieht die Gesamtsituation in Deutschland

nach dem Ausstiegsbeschluss aus?

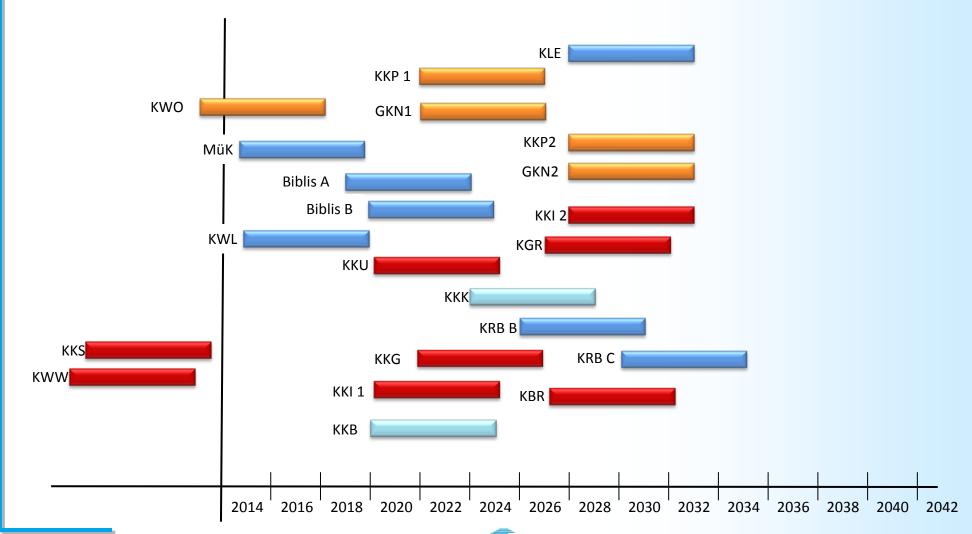



## Außerbetriebnahme KKW Deutschland

| Biblis Block A          |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Biblis Block B          |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Brunsbüttel             |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Isar Block I            |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Krümmel                 |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Neckarwestheim Block I  |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Philippsburg Block I    |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Unterweser              |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Grafenrheinfeld         |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Gundremmingen Block B   |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Philippsburg Block II   |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Brokdorf                |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Grohnde                 |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Gundremmingen Block C   |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Emsland                 |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Isar Block II           |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Neckarwestheim Block II |      |      |      |      |      |      |      |      |      |      |      |      |      |
|                         | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |




## Abfallvolumen Endlager Konrad KKW Deutschland






## Abfallmenge/anno für Endlager Konrad KKW Deutschland



#### Rückbau/Demontage Großkomponenten KKW Deutschland



#### Herausforderungen Rückbau ganzheitlich betrachtet

- Großkomponenten: Entzerrung der Rückbautermine im Hinblick auf die Verfügbarkeit externer Speziallisten? => Verlängerung ca. 10 Jahre
- Abfallgebinde: Verfügbarkeit Endlagerbehälter MOSAIK für aktivierte Komponenten (ca. 250 / KKW) bis zu 11 KKW gleichzeitig
- Genehmigung: BMU, RSK, SSK, Euratom wird es durch die gleichzeitige Bearbeitung vieler Genehmigungen vereinfacht oder dauert alles nur entsprechend länger
- Konrad: Verzögerung der Inbetriebnahme führt zu einem Stau der Abfälle, die an den Standorten jeweils eine längerfristige Zwischenlagerung erfordert => Genehmigung?
- Konrad: strengen wasserrechtlichen Auflagen => Rückbauabfälle können nicht alle in Konrad eingelagert werden, so dass ein zukünftiges Endlager (Gorleben 2) auch für den Rückbau relevant ist.
- Freigabe zur Beseitigung: Deponien verweigern die Annahme

#### NIS Projekt- und Kostenmanagement

#### Vielen Dank für ihre Aufmerksamkeit.





NIS Ingenieurgesellschaft mbH

#### NIS Ingenieurgesellschaft mbH

Industriestraße 13

63755 Alzenau - Deutschland

Tel.: + 49 (0) 6023/ 91-3991

Fax: + 49 (0) 6023/ 91-3970

E-mail: aldo.weber@siempelkamp.com

www.siempelkamp-nis.com



