
                                                                                                     Copyright © 2007 by JSME 1

15th International Conference on Nuclear Engineering 
Nagoya, Japan, April 22-26, 2007 

ICONE15-10568 

 

ADVANCED BWR STABILITY ANALYSIS WITH A REDUCED ORDER MODEL 
AND SYSTEM CODE  

 
C. Lange*,1,          D. Hennig1 

1Technische Universität Dresden, Institut für 
Energietechnik, Professur für Wasserstoff- 

und Kernenergietechnik,  
01069 Dresden, Germany 

*Phone: +4935146333317, 
Fax:+4935146337161, 

e-mail: Carsten.Lange@tu-dresden.de 

 

V. Garcia I Llorens and G. Verdu 
Departament d’Enginyeria Quìmica i 

Nuclear,  
Cami de Vera s/n 

CP 46022 
Valencia 

Spain  
e-mail: vigarllo@isirym.upv.es 

  
Keywords: BWR, Reduced order model, Drift Flux Model, Homogeneous Equilibrium Model, Stability Analysis, 
Bifurcation Analysis, Boiling Water Reactors.  

 
 
 

 
ABSTRACT 

The solution manifold of the system of nonlinear 
differential equations representing a BWR needs to be 
examined to understand its dynamical behavior. In 
particular, stable or unstable fixed points and stable or 
unstable oscillatory solutions (or turning points/saddle 
node bifurcations) are of paramount interest. In this 
framework integrated BWR (system) codes and 
simplified BWR models (reduced order models, ROM) 
are used together to reveal the solution manifold of the 
nonlinear differential equations describing the system. 
This work is a continuation of the previous work at the 
Paul Scherrer Institute (PSI, Switzerland) and 
University of Illinois (USA) on this field. The ROM 
developed at PSI was upgraded by introducing the 
recirculation loop, subcooled boiling and modification 
to the feedback reactivity calculation. The upgraded 
ROM has been coupled with the BIFDD code which 
performs semi-analytical bifurcation analysis. The 

methodology and some results of the semi-analytical 
bifurcation analysis of the modified ROM will be 
demonstrated and discussed. The stability boundary 
(SB) and the nature of the Poincarè-Andronov-Hopf 
bifurcation (PAH-B) are determined and visualized in 
appropriate two-dimensional parameter maps. 
Furthermore, for independent confirmation of the 
results, numerical integrations of the ROM differential 
equations have been carried out in the MATLAB 
environment. 
 
1. INTRODUCTION 

From theoretical and experimental studies, it is 
well known that for a boiling water reactor (BWR) 
plant there exists operational points (characterized by 
a given thermal power, core coolant flow, core inlet 
subcooling and control rod position) where slowly 
decaying or non-decaying power oscillations are 
observed [1-6]. Global or in-phase oscillations and 
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regional or out-of-phase oscillations are two kinds of 
observed power oscillations. In the in-phase mode, the 
fundamental mode oscillates, while in the out-of-phase 
mode the first azimuthal mode oscillates: when the 
power or flow rises in one half of the core, it decreases 
in the other half in such a way that the total mass flow 
and the core power remain constant. The physical 
mechanism behind the stable and unstable oscillatory 
behavior is based on the coupling between the neutron 
kinetics and the thermal hydraulics via the void and 
Doppler feedback reactivity [5, 6]. 

The dynamics of boiling water reactors (BWR) 
can be described by a system of coupled nonlinear 
partial differential equations. From the nonlinear 
dynamics point of view, it is well known that such 
systems show, under specific conditions, very complex 
behavior which is reflected in the solution manifold of 
the corresponding equation system [1-9]. 
Consequently, to understand the nonlinear stability 
behavior of a BWR, the solution manifold of the 
differential equation systems must be examined. In 
particular, with regard to the existence of operational 
points where stable and unstable power oscillations are 
observed, stable or unstable fixed points and stable or 
unstable oscillatory solutions (or turning points/saddle 
node bifurcations) are of paramount interest [2,5,6,10].  

These investigations have reactor safety relevance 
because power oscillations could induce undesirable 
hot spots in a BWR [2]. If the amplitudes become 
large enough, technical limit values (as critical power 
ratio) could be exceeded and fuel element failure could 
be expected. Furthermore, there exist BWR states 
where unstable limit cycles may occur (in the 
neighborhood of subcritical bifurcations [7-9]). In this 
case, small perturbations imposed on the system do not 
grow (stable). But if a critical perturbation amplitude 
is exceeded the system behavior becomes unstable. 
Therefore, conceivably, unstable conditions are not 
recognized and the operational safety limits could be 
violated. Hence the methodology of the nonlinear 
stability analysis of BWR, applied in the current work, 
should reveal such phenomena. 

In the framework of this approach, integrated 
BWR (system) codes and simplified BWR models  are 
used together to examine the stability characteristic of 
fixed points and periodic solutions of the nonlinear 
differential equations describing the stability behavior 
of a BWR loop [2,3,5,6]. This work is a continuation 
of the previous work at Paul Scherrer Institute (PSI, 
Switzerland) and University of Illinois (USA) on this 
field. The current ROM was extended by adding the 
recirculation loop and a model which takes into 
account the effect of subcooled boiling in an 

approximate manner. Furthermore, a new calculation 
methodology for the feedback reactivity was 
implemented. The modified ROM was coupled with 
the code BIFDD [3, 4-6] which performs semi-
analytical bifurcation analysis. 

This paper presents the motivation and the basic 
principles of this methodology. In addition to that the 
recirculation loop model and his influence on the SB 
and the PAH-B will be demonstrated. The new 
feedback reactivity calculation methodology and the 
subcooled boiling model will be presented in separate 
papers. 
 
2. METHODOLOGY 

Under variation of one or more selected system 
parameters (control parameters) a stable fixed point 
(stationary point) can lose his stability and a Hopf 
bifurcation occurs (under certain conditions explained 
later) which results in an isolated stable or unstable 
periodic solution (also termed stable or unstable limit 
cycle) of the system equations. The investigation of 
such nonlinear system behavior is the main objective 
of nonlinear stability analysis [1-13]. In the following, 
system codes and reduced order models are briefly 
characterized. 

System codes are computer programs which 
include detailed physical models of all nuclear power 
plant components which are significant for a particular 
transient analysis [2]. Therefore, such detailed BWR 
models should be able to represent the stability 
characteristics of a BWR close to the physical reality. 
Nonlinear BWR stability analysis with the aid of large 
system codes is currently common practice in many 
laboratories [2-6]. A particular requirement is the 
integration of a 3D neutron kinetic model for the core, 
thereby permitting analysis of regional or higher mode 
stability behavior [1-3]. 

A detailed investigation of the complete solution 
manifold of the nonlinear equations describing BWR 
stability behaviour by employing system codes needs 
comprehensive parameter variation studies which 
require large computational effort. Hence system 
codes are inappropriate to reveal the complete stability 
characteristics of a BWR. Therefore, reduced order 
analytical models become necessary [2-6]. The ROM 
is characterized by a minimum number of system 
equations which is mainly realized by reducing the 
geometrical complexity. One demand on the ROM is 
that the corresponding equation system should 
represent the true stability behaviour of a BWR loop. 
The main advantage of employing ROM is the 
coupling with methods of semi-analytical bifurcation 
analysis. In such a methodology the stability properties 
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of fixed points and periodic solutions are investigated 
analytically without the need for solving the system of 
nonlinear differential equations [2-6]. 

The main objective of the current work is to 
combine the system code analysis with the ROM 
analysis. The intention is, first, to identify the stability 
properties of certain operational points by performing 
ROM analysis and, secondly, to apply the system code 
for a detailed stability investigation in the 
neighbourhood of these operational points [2]. To this 
end, plant model data and data characterizing the 
operational point of a specified BWR plant will be 
extracted from the system code RAMONA. These 
data, appropriately recalculated, are ROM inputs. In 
the first step of the ROM investigation, semi-analytical 
bifurcation analysis will be performed. As a result, the 
SB and the nature of the PAH-B are determined. In the 
second step, for independent confirmation of the 
results, numerical integrations of the ROM differential 
equations will be carried out for specified parameter 
values [2-6, 10]. 
 
2.1. Semi-Analytical Bifurcation Analysis 

Stability analysis is the investigation of the 
behavior of the dynamical variables after a 
perturbation is introduced into the dynamical system. 
If the system is stable, all dynamical variables return to 
the fixed point (or in a close neighborhood of the fixed 
point)1. If the system is unstable, at least one 
dynamical variable is diverging in an oscillating or 
exponential manner. Thereby the SB, which depends 
on the system parameters, separates the stable fixed 
points from the unstable fixed points. A 
comprehensive mathematical description is given 
in [11-13]. 

In the framework of the present specific BWR 
stability research, the semi-analytical bifurcation 
analysis, the so-called Hopf bifurcations play a 
dominant role. The occurrence of such type of 
dynamical bifurcations is ensured by the Hopf 
theorem [12, 13]. This theorem, which is also called 
Poincarè-Andronov-Hopf bifurcation theorem, 
guarantees the existence of stable and unstable 
periodic solutions of nonlinear differential equations if 
certain conditions are satisfied [11-13]. For a 
mathematical description, the autonomous system,  

 ( )( ) ( ),d X t F X t
dt

γ=  (1) 

is considered. Thereby, nX ∈  is the state vector, F  
( :   is  n nF C∞× → ) is a vector field and mγ ∈  
is a parameter vector (also called control parameter 

                                                           
1 Also called “Ljapunov stability”[12] 

vector). Let 
0X  be the steady state solution 

00 ( , )F X γ=  of  Eq.(1) for all γ  and ( )J γ  be the 
Jacobian matrix of F  along the steady state 
solution [5,10,12]. If the following Hopf conditions 
are fulfilled: 

1) For a critical parameter cγ  there exists a pair 
of complex conjugate eigenvalues 

( )c iλ γ ω= ± , 
2) all the other eigenvalues have strictly 

negative real parts, and  
3)  ( ) 0cλ γ γ

γ
∂ =

≠
∂

, 

periodic solution of (1) exist at 
0X  for cγ  [5, 10-13].  

In order to get information about the stability 
property of the periodic solution, the (linear) Floquet 
theory is applied where the so-called Floquet exponent 
(Floquet parameter) 2β  appears [5] which determines 
the stability of the periodic solution. If 

2 0β < , the 
periodic solution is stable (supercritical bifurcation) 
while if 

2 0β > , the periodic solution is unstable 
(subcritical bifurcation) [5, 10-13].  

If the Hopf theorem is satisfied, the nonlinear 
equation system can be reduced to a two-dimensional 
nonlinear equation system by applying the center 
manifold reduction approach [11-13]. The resulting 
equation system, which represents the dynamical 
behavior of the complete system of equations in a 
close neighborhood of the fixed point where the Hopf 
theorem is fulfilled, will be transformed into the 
Poincarè normal form [13]. From this equation system 
parameters (in particular the Floquet exponents) which 
determine the stability properties of the fixed point, 
can be extracted numerically.  
 
2.2. The BIFDD Code 

The code BIFDD was developed to perform 
bifurcation analysis of ordinary differential equations 
(ODEs) numerically [5, 8, 10, 13]. For this purpose, a 
set of nonlinear ODEs and the corresponding Jacobian 
matrix are code inputs and the critical value of the 
bifurcation parameter (SB), the nature of PAH 
bifurcation and the oscillation amplitude will be 
determined. Thereby, the analytical reduction of the set 
of nonlinear ODEs on the Poincarè normal form (two-
dimensional manifold) via the center manifold 
theorem is carried out numerically [5,10,13].  

Hence, a FORTRAN subroutine was written ([2-
6]) to provide the right hand side of the set of 
nonlinear ODEs as well as the Jacobian matrix2 (the 
                                                           

2 The right hand side of the set of ODEs and the corresponding 
Jacobian matrix were derived analytically using the Maple symbolic tool 
box. 
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subroutine is called by BIFDD [5]). A main program 
was written [2-6] that allows selecting any of the 
design or operational parameters as the bifurcation 
parameter. The critical value of the bifurcation 
parameter can be repeatedly calculated by 
incrementally varying the so-called iteration parameter 
(second system parameter), leading to a SB in two-
dimensional space [2-6, 8, 10, 13].  

 
3. MODEL 

The current BWR reduced order model consists of 
three coupled sub-models. These are a neutron kinetic 
model, a fuel heat conduction model and a two-
channel thermal-hydraulic model (presented in 
[3,5,6]). In this paper, only the assumptions on which 
the sub-models are based on are given. In particular, 
the recirculation loop model is presented.  
 
3.1. Neutron Kinetics Model 

The neutron kinetics model is based on the 
following assumptions: 
• The neutron kinetics model is based on two 

energy groups (thermal and fast neutrons). 
• Spatial mode expansion approach of the neutron 

flux in terms of lambda modes ( λ -modes). 
• Only the first two modes (fundamental and the 

first mode) are considered [7,9,14,15]. 
• Only an effective one group of delayed neutron 

precursors is considered.  
• The contribution of the delayed neutron 

precursors to the feedback reactivity is 
neglected [3].  
Taking into account these assumptions, four 

modal kinetic equations could be developed, coupled 
with the equations of the heat conduction and the 
thermal-hydraulic via the feedback reactivity terms 
(void and Doppler feedback reactivities). Three 
feedback reactivity calculation methodologies were 
developed which are presented in a separate 
paper [18]. 

 
3.2. Fuel Rod Heat Conduction  

The heat conduction model, completely adopted 
from Karve et al. [17], is based on the following 
assumptions: 
• Two axial regions, corresponding to the single and 

two-phase regions, are considered,  
• three distinct radial regions, the fuel pellet, the 

gap and the clad are modeled in each of the two 
axial regions, 

• azimuthal symmetry for heat conduction in the 
radial direction is assumed, 

• heat conduction in the z-direction is neglected, 
• time-dependent, spatially uniform volumetric heat 

generation is assumed. 
These assumptions result in a one-dimensional 

(radial) time dependent partial differential equation 
(PDE). By assuming a two-piecewise quadratic spatial 
approximation for the fuel rod temperature, the PDE 
can be reduced to a system of ODEs by applying the 
variation principle approach. A detailed derivation is 
presented in [17]. 

  
3.3. Thermal-hydraulic Model 

The thermal hydraulic behavior of the BWR is 
represented by two heated channels coupled by the 
neutron kinetics [2-6,9] and by the recirculation loop. 
This sub-model is based on the following assumptions: 
• The heated channel, which has a constant flow 

cross section, is divided into two axial regions, the 
single and the two-phase region. 

• All thermal hydraulic values are averaged over the 
flow cross section 

• The dynamical behavior of the two-phase region 
is presented by a drift flux model (DFM) where 
mechanical non equilibrium (difference between 
the two phase velocities, and a radial non-uniform 
void distribution is considered) is assumed (the 
DFM represents the stability behavior of the two-
phase more accurately than a homogeneous 
equilibrium model, in particular for high void 
content).  

• The two phases are assumed to be in 
thermodynamic equilibrium. 

• The system pressure is considered to be constant. 
• The fluid in both axial regions and the downcomer 

is assumed to be incompressible.  
• The following terms are neglected in the energy 

balance: the kinetic energy, potential energy, 
pressure gradient, friction dissipation. 

• The PDEs (three-dimensional mass, momentum 
and energy balance equation) are converted into 
the final ODEs by applying the weighted residual 
method in which spatial approximations (spatially 
quadratic but time-dependent profiles) for the 
single phase enthalpy [17] and the two-phase 
quality are used (is equivalent to a coarse grained 
axial discretization).  

• The downcomer (constant flow cross section) 
region is considered to be a single phase region. 
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• All physical processes which lead to energy 
increase and energy decrease are neglected in the 
downcomer. 

• The pump head due to the recirculation pumps is 
considered to be constant (

headP const∆ = ) 
 

 
Figure 1: Schematic sketch of the thermal 
hydraulic two-channel model with outer loop.  

Figure 1 depicts a schematic sketch of the thermal 
hydraulic model including the recirculation loop. The 
sub-model consists of three parts. These are the two 
heated channels and the downcomer section. The 
common lower plenum and the common upper plenum 
are only shown to indicate that all channels are 
coupled hydraulically.  

The coolant enters the core channel i  inlet (single 
phase region) with the inlet velocities 

,vi inlet
 and the 

inlet enthalpy 
inleth const=  (is a boundary condition) 

and the heat is released by nuclear fissions in the fuel, 
conducted and convected to the coolant. At a certain 
axial level (boiling boundary ( )tµ ), where the coolant 
reaches the saturation state, the coolant starts to boil. 
Above the boiling boundary (two-phase region), the 
coolant is a mixture of water and steam. Because of 
the thermodynamic equilibrium between the two 

phases, the heat generated in the fuel is completely 
used for steam production.  

A comprehensive mathematical description of the 
single phase and two-phase equations of the current 
thermal hydraulic heated channel model is given in [3, 
5, 6]. In the context of the present paper only the 
mathematical background of the recirculation loop is 
given. 

The original ROM developed at PSI used a fixed 
total pressure drop with respect to time externDP const=  
as a boundary condition (equation (3)). According to  

1 0
_

0 1

0 h ch recircp pp dz dz dz
z z z

∂ ∂∂
= = +

∂ ∂ ∂∫ ∫ ∫  (2) 

1
_

0

0 h ch
extern

p
dz P

z
∂

⇒ ≈ − ∆
∂∫  (3) 

the outer loop (second integral in (2)) was replaced by 
the boundary condition (first integral represents the 
pressure drop of the heated channel). This is a 
reasonable approximation to represent the real stability 
behavior in an out-of phase oscillation mode. But note, 
in this case the stability behavior of the in-phase 
oscillation mode can not be simulated correctly. 
Hence, the ROM was extended by a recirculation loop 
model.  
 
Recirculation Loop Model 

In the following, a short description of the 
recirculation loop model is given. In this notation, an 
asterisk on a variable or parameter indicates the 
original dimensional quantity while any quantity 
without an asterisk is dimensionless. 

The mass balance of the downcomer can be 
written as 

 * ( ) 0totm t
z
∂

=
∂

 (4) 

and the total mass flow * ( )totm t   

* * * * *
, ,( ) ( ) v ( )tot n f n inlet n inlet

n n
m t m t A tρ ⎡ ⎤= = − ⎢ ⎥⎣ ⎦

∑ ∑  (5) 

can accordingly be expressed by the sum of the core 
channel mass flows *( )nm t , because the coolant in all 
hydraulic regions are considered to be incompressible. 
Thereby, n  is the channel number and *

,n inletA  is the 
flow cross section of the n -th heated channel.  

The energy balance of the downcomer is reduced 
to a boundary condition * *

_inlet doc inleth h const= =  because 
energy gain and energy loss are neglected.  

The momentum balance of the downcomer can be 
written as  
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2* * **
1

* * * * * *

* *

( ) ( )
2

doc tot tot

doc f doc doc

f

p m t m tf
z t A D A

g

ρ

ρ

Φ⎛ ⎞ ⎛ ⎞∂ ∂
− = +⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
+

 (6) 

where the term on the left hand side describes the 
pressure drop in the downcomer, the first term on the 
right hand side describes the pressure drop due to 
inertial effects of the coolant, the second term states 
the downcomer friction and the last term is the gravity 
term. Substituting of (5) in (6) and transforming in 
dimensionless form lead to  

,

2
2 1

1 ,

v ( )

v ( )

doc
ol n inlet

n

f ol ol n inlet
n

p
A t

z t

N A D t Fr−
Φ

⎛ ⎞∂ ∂
− = − ⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤− +⎢ ⎥
⎣ ⎦

∑

∑
 (7) 

where olA  and 
olD  are defined as * */ol inlet docA A A= and 

* */ol docD D D= . 
The ODEs for the channel inlet velocities 

,v ( )n inlet t  
are determined by expression (2) in which the pressure 
drop over the recirculation loop is given by  

0

1 1

.
o

recirc doc
head

p pdz dz P
z z

∂ ∂
= − ∆

∂ ∂∫ ∫  (8) 

The evaluation of equation (2) with expression (8) was 
performed by using the symbolic toolbox of 
MATLAB. The final ODE for the n -th heated channel 
can be written as  

, ,

2

1 ,

v ( ) ( ) ( ) v ( )

( ) v ( )

n inlet n n n inlet
n

n f ol ol n inlet
n

d dt A t B t t
d t d t

B t N A D tΦ

⎛ ⎞
= − ⋅⎜ ⎟

⎝ ⎠

⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑

∑

 (9) 

where ( )nA t  is defined as  

,
,11 ,12

,14

,13
,14

( )( )1( ) ( ) ( )
( )

1 ( ) 1
( )

n pchn
n n n

n

n head
n

dN td tA t ff t ff t
ff t dt dt

ff t Fr P
ff t

µ⎡ ⎤
= +⎢ ⎥

⎣ ⎦

⎡ ⎤+ + + ⋅∆⎣ ⎦

(10) 

and ( )nB t  is defined as 
,14( ) / ( )n ol nB t Fr A ff t= . 

Thereby, the time dependent intermediate 
terms

,11( )nff t , 
,12 ( )nff t , 

,13 ( )nff t  and 
,14 ( )nff t  are 

complicated expressions calculated in [3]. As 
expected, each ODE for 

,v ( )n inlet t  is hydraulically 
coupled because of (5) with all the other heated 
channels. Because of practical relevance, the ODEs for 

,v ( )n inlet t  was written separately for the one- and the 
two-heated channel cases. The result for the one-
heated- channel case is  

( )2
1

1v v
1inlet f ol ol inlet

d A B N A D
d t B Φ

⎡ ⎤= +⎣ ⎦+
 (11) 

and the ODEs for 
,v ( )n inlet t  in the two-heated-channel 

case ( 1,2n = ) can be written as 
2 1 1 2 1

1,
1 2

21 ,1
1, 2,

1 2

1 2 2 1 2
2,

1 2

22 ,1
1, 2,

1 2

v
1

v v
1

v
1

v v .
1

inlet

f ol ol
inlet inlet

inlet

f ol ol
inlet inlet

A B A B Ad
d t B B

B N A D
B B

A B A B Ad
d t B B

B N A D
B B

Φ

Φ

− ⋅ + ⋅ +
=

+ +

⎡ ⎤+ +⎣ ⎦+ +
− ⋅ + ⋅ +

=
+ +

⎡ ⎤+ +⎣ ⎦+ +

 (12) 

From the physical point of view, if the downcomer 
cross section is increased ( olA  decreases), inertial 
effects of the downcomer mass flow decrease which 
lead to a constant external pressure drop. 
Consequently, if the ratio olA  is zero ( 0olA = ) inertial 
effects of the downcomer vanish and (9) is reduced to 

,vn inlet nA=  (original ODE) which is the result of 
expression (3) evaluated in [3] (final ODEs for the 
heated channel inlet velocities presented in [3,5,6] 
with 1

extern headDP Fr P−= + ∆ ). 
 
3.4. Summary of the Model 

The dynamical system of the reduced BWR model 
consists of 22 ODEs, four from the neutron kinetics 
model, eight to describe the fuel rod heat conduction 
(two equations for each phase, in each channel) and ten 
that describe the thermal hydraulic model (five for 
each channel) [3,5,6]. Consequently ( )X t  is a vector 
of 22 phase variables presented in [3, 5, 6]. For the 
current parameter variation study, the subcooling 
number subN  and the phase change number pchN  are of 
interest. All the other parameters, the operating and 
design parameters which are the elements of the 
parameter vector γ , are considered to be 
constants [3,5,6] for the stability analysis.  
 
4. RESULTS AND DISCUSSIONS 

The first investigation with the new ROM was 
devoted to analyze the influence of the model 
modification on the SB and the PAH-B characteristics. 
Because of effects superposed (in particular, global 
plus regional power oscillation) in the thermal 
hydraulic two channel case, the first sensitivity study 
of the impact of the recirculation loop model on the 
stability properties was first concentrated on a thermal-
hydraulic one heated channel model (five equation 
system) in the homogeneous equilibrium (HEM) limit. 
The use of the HEM limit is justified by the fact that 
the principal effects of the recirculation loop model on 
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the stability property is the same as in the DFM, and 
differences are only quantitative not qualitative.  

In general, the SB can be represented in various 
operating parameter and/or phase variable planes [3, 5, 
6]. For the stability and bifurcation analysis with the 
thermal-hydraulic single heated channel model the 
stability boundaries were calculated in the sub pchN N−  
operating parameter plane. The subcooling number 

subN  represents the core inlet subcooling and appears 
as a boundary condition in the single phase energy 
equation. The phase change number (also called Zuber 
number) scales the phase change due to the heat 
addition into the coolant of the heated channel. The 

sub pchN N− -space shows the thermodynamic state 
within the heated channel. In face of this the 

sub pchN N− -parameter space is often used in the 
literature as stability map [3-6]. 

The impact of the subcooled boiling phenomenon 
and the influence of the new feedback reactivity 
calculation methodology on the stability properties are 
presented in separate papers. 

 
4.1. Effects of the Recirculation Loop on the 
Stability Boundary and Bifurcation Characteristics 
of a Thermal Hydraulic Single Heated Channel 
Model 

In this section, the impact of the recirculation loop 
(modified momentum balance) on the SB and nature of 
the periodic solution of the thermal hydraulic single 
heated channel model in the HEM limit is performed. 
To this end, the ratio olA  (see equation (9)) was varied 
in small steps (which corresponds to the variation of 
the downcomer flow cross section *

docA ) and semi-
analytical bifurcation analysis was carried out by 
employing BIFDD. Thereby the bifurcation parameter 
is pchN  and the iteration parameter is subN . By 
setting 0olD = , downcomer friction is not considered 
in (11). Because of practical relevance the ratio olA  
and subN  were varied in the interval [0.0,..., 2.0]olA ∈  
and [0.1,..., 4.0]subN ∈ , respectively. 

Figure (2) shows SBs in the subN - pchN -parameter 
space for different olA  values calculated by employing 
semi-analytical bifurcation analysis. The stability 
boundaries shift to the right hand site, thus increasing 
the area of the stability domain, for increasing olA  
values. From the stability point of view, the number of 
stable fixed points increases. According to this, the 
system becomes more stable. 

The bifurcation characteristics for the different 
olA  values are shown in figure (3). The number of 

subcritical fixed points (unstable limit cycles) 
decreases for increasing olA  values. This fact has 

safety relevance because a subcritical fixed point may 
deceptively appear as a stable fixed point if the 
perturbation is sufficiently small. But if the 
disturbance overcomes the critical amplitude, the fixed 
point becomes unstable.  
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Figure 3: Poincarè-Andronov-Hopf 
bifurcation characteristic in the subN - 2β -parameter 
( 2β  Floquet parameter, see chapter 2.1) space for 
different ratios olA  with [0,..., 2]olA ∈  

To analyze the influence of the downcomer 
friction separately the ratio olD  was varied in 

[0.0,...,0.14]olD ∈  (practical values are placed in the 
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region [0.02,...,0.04]olD ∈ ) where olA  was set 
1.2olA = .  

Figures (4) and (5) present the stability and 
bifurcation results for the olD variation. Figure (4) 
clearly shows that the stability boundaries shift to the 
left hand side for increasing olD  values. Consequently, 
the system becomes more unstable. On the other hand, 
the number of subcritical fixed points decreases for 
increasing olD  values as shown in figure (5). But both 
figures also show that the stability behavior of the 
dynamical system is not sensitive to the olD  variation. 
Concerning practical values for olD  the downcomer 
friction can be neglected in further investigations.  
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The analyzed results confirm the fact that the 
recirculation loop model is an essential element in the 
BWR-ROM. In particular, for the correct presentation 
of the stability behavior of global power oscillations 
the external loop should always be considered.  

The dominant term in the external loop model 
(momentum balance) is the inertial term. On the other 
hand, the downcomer friction has a very small impact 
on the stability behavior. Consequently, it can be 
neglected in further stability investigations. 

 
4.2. Numerical Integration 

Semi-analytical bifurcation analysis is only valid 
in the vicinity of the SB [3, 5, 6, 12, and 13]. Hence, to 
get information of the stability behavior beyond the 
local bifurcation findings numerical integration of the 
set of the ODEs is necessary. In addition to that the 
predictions of the semi-analytical bifurcation analysis 
can be confirmed independently by employing 
numerical integration. To this end, the ODEs are 
integrated in the MATLAB environment, where a 
Runge-Kutta method was used.  

The aim of this section is to show the numerical 
integration method by means of the thermal-hydraulic 
single heated channel model in a close neighborhood 
of two points, defined in figure 6 and 7, on the SB.  
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Figure 6: Definition of two points, A  and B , 
on the SB 
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Figure 7: The corresponding points in the 
bifurcation characteristic map. 

Numerical integration results with parameter 
configurations corresponding to points A  and B  are 
presented next.  

 
Analysis in point A : On the left hand side of 

point A , stable fixed points are predicted. For the 
analysis in this region the phase change number was 
varied form the critical value 10.7671pchN =  to 

10.7pchN =  and a perturbation in the inlet 
velocity vinletδ  was introduced to the system (steady 
state). Figure 8 presents the time evolution of vinlet . It 
is clearly shown that the system is stable. 
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Figures 8: Time evolution of vinlet . The system is 
stable on the left hand side of the SB.  

On the right hand side of the SB, stable limit 
cycles of the dynamical system are predicted. For the 
analysis in this region, pchN  was changed from the 
critical value 10.7671pchN =  to 10.78pchN =  and the 
same perturbation amplitude vinletδ  was introduced 
into the system. The result is presented in figure 9. As 
expected, the stable periodic solution of the dynamical 
system in this point could be confirmed by numerical 
integration.  
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Figure 9: Time evolution of vinlet . The 
dynamical system has a stable periodic solution on the 
right hand side of the SB. 
 

Analysis in point B : A subcritical bifurcation is 
predicted at point B . Consequently, unstable limit 
cycles are expected on the stable side of the SB. For 
the numerical integration, pchN  was changed from the 
critical value 7.21562pchN =  to 7.2151pchN = . In the 
first step of the analysis, a perturbation amplitude of 

v 0.01inletδ =  was introduced into the dynamical 
system and numerical integration was performed. The 
result is shown in figure 10. In the second step, a six 
times larger perturbation amplitude v 0.06inletδ =  was 
introduced into the system which has the same 
parameter configuration. The result is shown in figure 
11. The result, shown in figure 10 and figure 11, 
confirms the dynamical behavior predicted in the 
semi-analytical bifurcation analysis. The system is 
stable for small amplitudes and unstable for large 
amplitudes.  

On the right hand side of point B  the system is 
unstable. In the scope of this paper, results of this 
region are not presented. 
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Figure 10: Time evolution of vinlet . The system is 
stable for the relative small perturbation amplitude 

v 0.01inletδ = . 
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Figure 11:  Time evolution of vinlet . The system is 
unstable for the relative large perturbation amplitude 
of v 0.06inletδ = . 
 
 
5. SUMMARY AND CONCLUSIONS 

In this paper, a recirculation loop model is 
introduced in the BWR reduced order model. First 
investigations are devoted in the influence of the 
model modification on the SB and PAH-B 
characteristics. To this end, a thermal hydraulic single 
heated channel model is employed to study the impact 
of the recirculation loop on the stability properties.  

Stability and bifurcation analyses were performed 
by employing the bifurcation analyses code BIFDD. 
The SBs and the nature of the PAH-Bs are determined 
and visualized in a suitable two-dimensional parameter 
state space.  

The study of the impact of the recirculation loop 
on the SB and PAH-B was carried out by variation of 
the downcomer flow cross section. The results clearly 
show that the stability behaviour of the thermal 
hydraulic single heated channel model is very sensitive 
to the downcomer flow cross section. Consequently, 
BWR stability analysis should be performed always 
including the recirculation loop. Further, it can be 
concluded from the sensitivity investigations that the 
downcomer friction can be neglected in further 
investigations.  

Furthermore, the numerical integration method 
was presented for the thermal hydraulic single heated 
channel model in a close neighborhood of two points 
on the SB. The dynamical behavior predicted by the 
semi-analytical bifurcation analysis could be 
confirmed independently by the numerical integration. 

 
NOMENCLATURE 

*
gρ  vapor density, *

fρ  liquid density, *g gravitational 
constant, *

0v  reference velocity, *
fgh∆  vapor-liquid 

enthalpy difference, *ρ∆  liquid-vapor density 
difference, *

sath  liquid saturation enthalpy 
Heated channel: *

inleth  inlet enthalpy, *
inletv  inlet 

velocity, *
inletA  cross section, *L  length, *D  hydraulic 

diameter, *
1f Φ

 single phase friction factor, *
,1h∞ Φ  clad 

surface heat transfer coefficient of the single phase 
region, *

hξ  heat perimeter of the clad, ''*
1q Φ  single phase 

wall heat flux, 
Downcomer: externP∆  external pressure drop, ( )totm t  
total mass flow, *

_doc inleth  downcomer inlet enthalpy, 
*
docA  downcomer cross section, *

docD  downcomer 
hydraulic diameter,  
Dimensionless numbers: 1fN Φ  single phase friction 
number, Fr  Froude number, pchN  phase change 
number, subN  subcooling number 

* * * * **

* * * * * *
0

( ) ''
, ,

v
sat inlet h

sub pch
fg g inlet fg g

h h q L
N N

h A h
ξ ρρ

ρ ρ
− ∆∆

= ⋅ =
∆ ∆

* * 2* * *
01

1* * * * *

v
, , ,

2
inlet

ol ol f
doc doc

A D f L
A D N Fr

A D D g L
Φ

Φ= = = =
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