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ABSTRACT 
 
In developed European countries, the number of a small and middle-scale biomass gasification combined heat and 
power plants as well as syngas production plants has been significantly increased in the last decade mostly due to 
extensive incentives. However, existing issues regarding syngas quality, process efficiency, emissions and 
environmental standards are preventing biomass gasification technology to become more economically viable.  
 
To encounter these issues, special attention is given to the development of mathematical models which can 
contribute to a more efficient plant design, to predict when the process becomes ineffective or harmful or they can 
be used for control purposes. Mathematical models can range from three-dimensional models that take fluid 
dynamics and chemical reactions kinetics into consideration, to simpler models where the mass and energy balances 
are considered over the entire or a part of a gasifier to predict process parameters. The complexity and 
computational intensiveness of detailed models imposes the need for development of simpler models, either based 
on first principles or neural networks, which can be used for a fast process parameter prediction and control. The 
complexity of simpler models can also range from chemical reaction equilibrium based models that take only few 
most important process reactions into consideration to artificial intelligence system based models or more complex 
equilibrium or pseudo-equilibrium models where the tar formation is also considered. Due to need for intensive 
measurements, not many works on artificial intelligence system based biomass gasification models have been 
reported. Results derived from these kinds of models often vary from author to author. 
 
The work presents an analysis of different biomass gasification modelling aspects that can be used for an on-line 
process control. After related literature review and measurement data analysis, different modelling approaches for 
the process parameter prediction will be devised. Models results and possibilities of neural networks to predict 
process parameters with high speed and accuracy will be analysed. Measurement data for model performance 
analysis will be derived from biomass gasification plant located at Technical University Dresden. 
 

1. INTRODUCTION 
 

Gasification of biomass is a high-temperature partial oxidation process in which a solid carbon based feedstock is 
converted into a gaseous mixture (H2, CO, CO2, CH4, light hydrocarbons, tar, char, ash and minor contaminates) 
called “syngas”, using gasifying agents [1]. As the most important process products of gasification, H2 and CO 
contain only around 50% of the energy in the gas while the remained energy is contained in CH4 and higher 
(aromatic) hydrocarbons [2]. As gasifying agents, air, pure oxygen, steam, carbon dioxide, nitrogen or their mixtures 
could be used. The utilisation of different gasifing agents results in different gasification process characteristics (gas 
quality, gas production rate, char and tar production and gas lower heating value). 
 
 
 
 
 
*corresponding author 
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Gasification process could be divided into three main stages: drying (100-200 °C), pyrolysis (200–500 °C) and 
gasification (500–1000 °C) [1,2]. In the drying process the moisture from biomass evaporates and biomass becomes 
dry. In the pyrolysis stage of the process, the volatile components from biomass are vaporised through various 
complex reactions. By-products of the pyrolysis stage are char and other inert components that have not been 
vaporised. In the gasification process, the char is gasified through reactions with the gasifing agent and products of 
pyrolysis (H2 and CO). The energy that is needed for this process is produced from combustion of part of the fuel, 
char and gases. The main reactions during the biomass gasification process [3,4] are shown in Table 1. 
 

 Reaction Chemical reactions ΔH [kJ/mol] 
Primary devolatilisation (pyrolysis)  Biomass → H2O, CO, CO2, CH4, C2H4 and C  

Tar cracking and reforming Primary tar → Secondary tar + H2, CO, CO2, CH4, C2H4   
 
 
 

Homogenous gas-phase  

Secondary tars → C, CO, H2 
H2 + 0,5 O2 → H2O 
CO + 0,5 O2 → CO2 

CH4 + 0,5 O2 → CO + 2 H2 
CH4 + CO2 → 2 CO + 2 H2 
CH4 + H2O → CO + 3 H2 
CO + H2O → CO2 + H2 

 
- 242  
- 283  
- 110  
+247  
+206  
- 40,9  

 
 

Heterogeneous 

C + O2 → CO2 
C + 0,5 O2 → CO 
C + CO2 → 2 CO 

C + H2O → CO + H2 
C + 2 H2 → CH4  

- 393,5  
- 123,1  
+ 159,9  
+ 118,5  
- 87,5  

Table 1: Main reactions during biomass gasification process 
 
The performance of biomass gasification processes is influenced by large numbers of operation parameters 
concerning the gasifier and biomass [1], such as fuel and gasification agent flow rate, composition and moisture 
content of the biomass, geometrical configuration of the gasifier, reaction/residence time, type of gasifying agent, 
different size of biomass particles (typically from 0.1-0.4 mm for entrained flow gasifiers [1], 0.4-1.5 mm for 
fluidised bed gasifiers [5] and 5-100 mm for fixed bed gasifiers [6]), gasification temperature (750-1000°C [2, 5]), 
pressure (1 – 20 bar [5]) and the gasifying agent/biomass ratio. 
 
Gasifiers can be mainly classified as autothermal or allothermal gasifiers [7]. In autothermal gasifiers the reactions 
of combustion and gasification are performed simultaneously in one single reactor while in allothermal gasifiers, 
part of reactor that is used for gasification reactions is indirectly heated. Three types of gasifier are used for biomass 
gasification purposes: fluidised bed; fixed bed; and entrained flow gasifiers (Fig. 1.). 
 

 
Fig. 1. Simplified scheme of fixed bed (left), fluidised bed (middle) and entrained flow (right) gasifier [8] 

 
The downdraft type of gasifiers are the most manufactured (75%) types of gasifiers in Europe, United States of 
America and Canada. 20% of all produced gasifiers are fluidised bed gasifiers and the remaining  5% are updraft 
and other types of gasifiers [9]. Products of gasification are mostly used for separately or combined heat and power 
generation, liquid fuels production and for chemical production. Biomass gasification seems to have promising 
potential for electricity and heat cogeneration through conventional or fuel cells based technology.  
 
Mathematical models can be used to explain, predict or simulate the process behaviour and to analyse effects of 
different process variables on process performance. Mathematical models are essential for process optimisation and 
control because they can be used to analyse effects of various different operating parameters on process behaviour in 
reasonable time and with reasonable costs. Nowadays, special attention is given to the biomass gasification process 
modelling [10] which can contribute to more efficient plant design, emission and syngas generation prediction or 
plant control in order to optimise the gasification process. 
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2. MATHEMATICAL MODELS FOR THE BIOMASS GASIFICATION 
PROCESS  

 
Mathematical modelling is mostly based on the conservation laws of mass, energy and momentum. The complexity 
of models can range from complex three-dimensional models that take fluid dynamics (CFD models) and chemical 
reactions into consideration to simpler models where mass and energy balances are considered over the entire 
gasifier to predict the gas composition.  
 
Kinetic mathematical models are used to describe kinetic mechanisms of the biomass gasification process. They take 
into consideration various chemical reactions and transfer phenomena among phases [1]. Kinetic models are very 
useful in detailed description of the biomass conversion during the gasification process, for the gasifier design and 
process improvement purposes, but due to their computationally intensiveness and long computational time they are 
still impractical for online process control. Models that do not solve particular processes and chemical reactions in 
the gasifier and instead consist of overall mass and heat balances for the entire gasifier are called equilibrium 
models. Equilibrium models are generally based on chemical reaction equilibrium and take into account the second 
law of thermodynamics for the entire gasification process [1]. Artificial neural networks (ANN) models use a pure 
mathematical modelling approach which correlates the input and output data to form a mathematical prediction 
model. ANN is a universal function approximator that has ability to approximate any continuous function to an 
arbitrary precision even without apriori knowledge on structure of the function that is approximated [11]. A 
comparison of different modelling approaches is described in Table 2. 
 
Mathematical model approach Advantages Disadvantages 

 
 

Kinetic models 

More realistic process description 
Extensive information regarding process 

operation 
Good for gasifier design and improvement 

purposes  

All possible process reactions are not 
considered 

Different model reaction coefficients and kinetics 
constants  

Dependable on the gasifier design  
Impractical for online process control 

 
 
 
 
 
 
 
 

Equilibrium 
models 

 Independent from gasifier type and 
design or specific range of operating 

conditions 
Useful in prediction of gasifier 

performance under various different 
operational parameters 

Easy to implement 
Fast convergence  

 
 
 

Describe only stationary gasification process 
Do not offer insight in gasification process 

 
Stoichiometric  

models 

 
Applicable for describing complex 

reactions in general 

Only some reactions are taken into consideration  
Reaction mechanisms must be clearly defined 

Equilibrium constants are highly dependable on 
specific range of process parameters 

Non-stoichio-
metric models 

Simplicity of input data 
Used to predict the syngas composition  

Describe gasification process only in general 
Lack of detailed process information 

Pseudo-
equilibrium 

models 

 
More realistic equilibrium models  

Estimation of methane, carbon and tar in outlet 
steam is necessity 

Model is dependable on site specific 
measurements and type of the gasifier. 

Artificial 
neural 

networks 
models 

 Do not need extensive knowledge 
regarding process 

Depends on large quantity of experimental data  
Many idealised assumptions 

Hybrid neural 
network model 

 Knowledge regarding process is needed 

Table 2: Comparison of different modelling approaches [12] 
 
The literature [13-31] offers several comprehensive gasification models that could be used for biomass gasification 
process control and optimisation. Devised models are mostly equilibrium based models and offer only static process 
analysis and optimisation. Often, for development of this kind of models, several assumptions have to be made. 
Many authors in their research analyse different kind of effects on gasification process so it is hard to correlate 
results derived from their research. Most of the literature is focused on the development of equilibrium models for 
downdraft fixed bed or fluidised bed gasifiers because these types of gasifier have proven their reliability in a lot of 
demonstration and test plants and are the most manufactured type of gasifiers in the EU, USA and Canada.  
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3. EQUILIBRIUM MODELS ANALYSIS 
 
For the biomass gasification process and equilibrium models performance analysis, two different equilibrium 
modelling approaches have been devised. The equilibrium model without tar calculations is based on Babu et al. 
[22] methodology while the equilibrium model with tar calculations is based on methodology proposed by Barman 
et al. [23]. Both models are based on energy and mass conservation laws as well as equilibrium chemical balances 
calculations. Equilibrium chemical balances of the water gas shift reaction (K1), methane reaction (K2) and methane 
reforming reaction (K3) have been taken into consideration. Input parameters of both models are biomass 
composition, biomass moisture content and air input. Output model parameters are syngas composition and process 
temperature. The syngas is assumed to consist of H2, CO, CO2, H2O (vapour), CH4, N2 gases and tar (CH0.83). In the 
equilibrium model with tar calculation, the chemical compound “Acenaphthene” has been used to represent tar in 
model calculations. The energy that is released or consumed during process reactions is taken from Table 1. The 
summary of both modelling approaches is presented in Table 3. 
 

 Equilibrium model without tar calculations Equilibrium model with tar calculations 
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Energy 
balance reactionssyngasbiomassin QLHVLHVQ +=+  

reactionssyngasbiomassin QLHVLHVQ +=+  

Table 3. Summary of two different equilibrium modelling approaches 
 
The modelling scheme is presented on Fig. 2. Both models are based on an iteration approach for the process 
parameter calculation. First, the initial process temperature and the gas composition are assumed. Based on an initial 
process temperature assumption, chemical balance constants (kinetic constants) are calculated. Based on mass and 
chemical balances and model inputs, the new syngas composition is calculated. When difference between previous 
calculation and current calculation is less than 1%, the iteration circle is stopped and current results are taken as 
final. After syngas composition calculation, the process temperature is calculated (based on energy balance 
equations). If the difference between calculated and initial temperature assumption is larger than 1%, calculated 
temperature is set to become the new initial temperature and the whole calculation-iteration process repeats again. 
 

 
Fig. 2. Modelling scheme - Equilibrium model 
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Model results can be seen on Fig. 2 and 3. Figure 2 represents results derived from equilibrium model without tar 
calculations. Results show that with an increase of the moisture content in the biomass together with an increase of 
the air flow, the process temperature decreases. Due to temperature dependence of different chemical reactions, 
similar tendency can be seen for H2, CO and H2O syngas composition values. Results derived from the equilibrium 
model with tar calculations (Fig. 3.) show good correlation with results derived from the Barman et al. [23] research. 
Results show that the temperature increases with moisture content while with different air flows it remains relative 
constant. CO values follow the tendency of temperature changes due to strong dependence of the chemical reactions 
that involve CO with process temperature. Model tar calculations show that the tar is increased with moisture 
content in biomass and with air flow decrease. Negative tar values are not physically explainable. They are result of 
modelling approach (equations that define the equilibrium gasification model).  Different equilibrium modelling 
approaches show different results that cannot be compared in some cases. They are comparable with results derived 
from literature only for specific operating points. 
 

 
Fig. 3. Results of the equilibrium model without tar calculations 

 

 
Fig. 4. Results of the equilibrium model with tar calculations 
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4. NEURAL NETWORK MODEL  
 
For utilizing a neural network model (NNM), the prediction model has to learn/to be trained from 
observed/measured data. Neural network models require measurements to form input and output data sets for neural 
network training. With different sets of input and output data as well as different training procedures, results from 
NNM will differ. NNM are often dependable on site specific measurements. Data for neural network training were 
extracted from a database attached to 2 biomass gasification facility operated by TU Dresden, Germany with 
resolution of 30 seconds. One facility (100kWth ) is located in Schwarze Pumpe, Germany and the other biomass 
gasification facility (75kWth )  is located in Pirna, Germany. Facility scheme located in Pirna, Germany is presented 
on Fig. 5.  
 

 
Fig. 5. Experimental biomass gasification facility located in Pirna 

 
In order to devise NNM with acceptable average model prediction error, neural network modelling approach 
analysis (different input and output sets and training procedures) has to be performed.  The example of the 
comparative analysis of temperature prediction modelling approaches (cases 1-4) for biomass gasification facility 
located in Schwarze Pumpe is shown in Table 4. 
 

Model inputs 
 Case 1 Case 2 Case 3 Case 4 

Fuel flow total fuel injected (from 
beginning) [kg] 

fuel injected in the last 
10 min [kg/10min] 

fuel injected in the last 
10 min [kg/10min] 

fuel injected in the last 
10 min [kg/10min] 

Air flow current air flow [m3/h] current air flow [m3/h] air injected in the last 
10 min [m3/10min] 

air injected in the last 
10 min [m3/10min] 

 
Related time 

time passed from the 
last fuel injection 

[min] 

time passed from the 
last fuel injection 

[min] 

time passed from the 
last fuel injection 

[min] 

time passed from the 
last fuel injection 

[min] 
Temperature current temperature 

[°C] 
current temperature 

[°C] 
current temperature 

[°C] 
current temperature 

[°C] 
Other - - - different NN training 

procedure 
Model outputs 

Model output temperature 
progression [°C/min] 

temperature 
progression [°C/min] 

temperature 
progression [°C/min] 

temperature 
progression [°C/min] 

Average error 10,60 % 52,83 % 14,35 % 7,77 % 
Table 4. Comparative analysis of different neural network modelling approaches 
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Comparative analysis shows that a minimum average model prediction error can be found in the case where the fuel 
and air injected in the last 10 min together with time passed from the last fuel injection and current outgoing syngas 
temperature are set to be as input data and temperature progression is set to be as output data. 
 
Similar modelling procedure has been conducted for gasifier located in Pirna, Germany. This gasifier has different 
operation and design characteristics. Nevertheless, similar modelling approach that has been used for temperature 
prediction for gasifier located in Schwarze Pumpe has shown good prediction capabilities (in terms of average 
prediction error). 
 
Different time periods for calculations of injected fuel and air quantities into a gasifier have been used in order to 
find prediction model with the lowest prediction error. The analysis of influence of time periods on model prediction 
performance has been shown in Table 5. The lowest average prediction error of NNM for Pirna gasifier is in case 
when the time period is set to be 25 minutes. 
 

Time period [min] Average error [%] 
10 14,46 
15 9,40 
20 6,74 
25 6,48 
30 7,42 
35 7,91 
40 7,37 

Table 5. Analysis of influence of time periods for fuel and air quantities calculation on model prediction error 
 
The similar type of input data sets described from temperature prediction model has been used in order to devise 
neural network prediction model for the gas composition. Due to measurement characteristics, syngas composition 
prediction model has been devised for outgoing syngas temperature between 250 - 430 °C. The summary of both 
models can be found in Table 6. 
 

Model inputs 
 Syngas temperature Syngas composition (CO, CO2, CH4, H2 and O2 

values) 
Fuel flow Fuel injected in the last 25 min 

[kg/25 min] 
Fuel injected in the last hour  

[kg/h] 
Air flow Air injected in the last 25 min 

[kg/25 min] 
Air injected in the last hour  

[m3/h] 
 

Related time 
Time passed from the last fuel 

injection 
[min] 

Time passed from the last fuel injection 
[min] 

Temperature Current syngas temperature Syngas temperature 
Number of daily experiments 

used for NNM training 
4 4 

Neural network training method Gaussian curve membership 
function 

Gaussian curve membership function 

Model boundaries Modelled syngas temperature: 
20 - 450 °C 

For syngas temperature:  
250 - 430 °C 

Model outputs 
Model output Temperature progression  

[°C/min] 
Gas content  

[%] 
Average error / Syngas 

component prediction error (daily 
basis) 

 
6,48 % 

CO CO2 CH4 H2 O2 
0,01 % 0,05 % 0,12 % 0,45 % 0,97 % 

Table 6. The summary of temperature and composition prediction neural network models for gasifier located in Pirna 
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5. RESULTS 
 
Neural network approximation model (ANFIS) shows good results for the syngas temperature prediction (see Fig. 
6.). The error between measured and calculated values is mostly between ±10% which represents good 
approximation of syngas temperature during plant operation. In some marginal cases the error can reach up to ±25%.  
Neural network prediction model shows good prediction possibilities in terms of the syngas temperature progression 
prediction during the plant operation with different operating starting points (“cold” start and “warm/preheated” 
start). Devised model is applicable for syngas temperature prediction range between 20°C and 450°C.  
 

 
Fig. 6. Results of the neural network model for syngas temperature prediction – Pirna gasifier 

 
In order to verify neural network syngas prediction model devised for Pirna gasifier, additional model prediction test 
has been performed on new set of measured data. Model prediction has showed good correlation with new input 
data. Prediction error is mostly between ±10% and in some marginally cases it reaches -25%. The model verification 
test has been performed for the syngas temperature range between 25°C and 425°C. Pirna NNM verification test 
results are presented on Fig. 7. 
 

 
Fig. 7. Neural network model verification test for syngas temperature prediction – Pirna gasifier 
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Similar to syngas temperature prediction model, syngas composition prediction model has been also analysed. The 
H2 neural network prediction model for 4 different experimental sets/measurement campaigns is presented in Fig. 8. 
Predicted H2 values and progression of these values during the plant operation is in good correlation with measured 
data. During the plant operation, H2 values are mostly between 5-10% of total volume gas composition, with 
maximum value of 11%.  
 

 
Fig. 8. Results of the neural network model for syngas composition prediction (H2) – Pirna gasifier 

 
The syngas composition prediction model has been verified on the new set of measured data (Fig. 9.). Although 
measured H2 values range significant from minute to minute, neural network model predicts average H2 values and 
their progression tendency with reasonable accuracy.   
 

 
Fig. 9. Neural network model verification test for syngas composition prediction (H2) – Pirna gasifier 

 
Due to significant differences between minute based measurements of syngas components, prediction model 
potential to predict averaged syngas composition values has been analysed.  Prediction of hourly averaged H2 values 
from gasification process is presented in Fig. 10. Neural network prediction model enables good approximation of 
hourly averaged H2 values as well as time progression of these values during gasifier operation. Averaged H2 values 
are ranging mostly between 6 - 10%. 
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Fig. 10. Results of the neural network model for hourly averaged syngas composition prediction (H2) – Pirna gasifier 

 
Results of neural network prediction models for other syngas components are presented on Fig. 11 (CH4), 12 (CO), 
13 (CO2) and 14 (O2). In all 4 cases, devised NNM shows good syngas composition prediction potential. During the 
gasifier operation CH4 values are ranging between 1,5 - 3,5%, CO values between 15 – 25%, CO2 values between 7 
– 13% and O2 values between 0,5 – 6%. The rest of the syngas composition is composed mostly of nitrogen oxides 
and higher hydrocarbons (in much smaller amount).   
 

 
Fig. 11. Results of the neural network model for hourly averaged syngas composition prediction (CH4) – Pirna gasifier  
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Fig. 12. Results of the neural network model for hourly averaged syngas composition prediction (CO) – Pirna gasifier  

 
Fig. 13. Results of the neural network model for hourly averaged syngas composition prediction (CO2) – Pirna gasifier  

 
Fig. 14. Results of the neural network model for hourly averaged syngas composition prediction (O2) – Pirna gasifier  
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6. CONCLUSION 
 

This paper has analysed the possibilities of different modelling approaches that can be used for an on-line process 
control to predict biomass gasification process parameters with high speed and accuracy. Biomass gasification is a 
complex process influenced by large number of operation parameters that still faces some problems regarding 
environmental standards. In order to improve efficiency and to optimise the process, a plant operation analysis in 
dependence of various operating conditions is needed. Large scale experiments for these purposes could often be 
expensive or problematic in terms of safety. Therefore, various mathematical models are utilized to predict the 
process performance in order to optimise the plant design or process operation in time consuming and financial 
acceptable way. Devised models often differ in terms of delivered process information and they are often lacking 
extensive experimental data for verification purposes. After related literature review and measurement data analysis, 
two different modelling approaches for the process parameter prediction have been devised. Two similar modelling 
approaches have been used to devise equilibrium biomass gasification models. Results derived from these models 
differ in terms of calculated parameter values. These kinds of models are suitable for process prediction at specific 
operation point. In order to describe the process and to predict process parameter values for various operating points, 
neural network model has been devised. The methodology that has been used for development of neural network 
prediction model is applicable for different kind of gasifier designs. Devised temperature and syngas composition 
neural network prediction model has been verified on new set of experimental data and model outputs have been 
analysed. Neural network models show good correlation with measured data and good capability to predict biomass 
gasification process parameters with reasonable accuracy and speed. 
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