Synthesis of carboxyl cellulose sulfate with various contents of regioselectively introduced sulfate and carboxyl groups

Kai Zhanga, Dieter Peschelb, Thomas Klingerc, Kathrin Gebauerd, Thomas Grothb, Steffen Fischera,∗

a Institute of Wood and Plant Chemistry, Dresden University of Technology, Piener Str. 19, D-01737 Tharandt, Germany
b Biomedical Materials Group, Department Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, D-06120 Halle (Saale), Germany
c Institute of Soil Science and Site Ecology, Pienner Str. 19, D-01737 Tharandt, Germany
d Institute of Power Engineering, Helmholtzstr.10, Dresden University of Technology, D-01069 Dresden, Germany

\textbf{A R T I C L E I N F O}

Article history:
Received 28 February 2010
Received in revised form 5 April 2010
Accepted 13 April 2010
Available online 20 April 2010

Keywords:
Cellulose sulfate
Carboxyl cellulose
Carboxyl cellulose sulfate
FT Raman spectroscopy
13C NMR spectroscopy

\textbf{A B S T R A C T}

Both sulfate and carboxyl groups are found in many glycosaminoglycans exhibiting diverse biological activities, such as heparin. Present study reports on the preparation of cellulose derivatives containing both sulfate and carboxyl groups that were regioselectively introduced into anhydroglucose units (AGU) of cellulose. The products – carboxyl cellulose sulfates (COCS) – with various contents of both functional groups were obtained by two synthesis routes. One way started with sulfation of cellulose yielding cellulose sulfate (CS), followed by TEMPO-mediated oxidation of CS. In another way, cellulose at first underwent TEMPO-mediated oxidation yielding carboxyl cellulose (COC). Subsequently, acetylation of the COC was carried out. The products were characterized by diverse analysis methods, and the amounts of both functional groups in CS, COC and COCS were determined. Finally, the biological activity of COCS was examined.

© 2010 Published by Elsevier Ltd.

\textbf{1. Introduction}

Glycosaminoglycans, such as heparin and heparan sulfate, demonstrate important functions in regulation of cellular proliferation and differentiation (Carroll & Koch, 2003). In this regard, heparin and heparan sulfate can bond a large variety of growth factors and cytokines (Capila & Linhardt, 2002; Darnell, Lodish, & Baltimore, 1990; Rabenstein, 2002). Although both heparin and heparan sulfate contain carboxyl, sulfate and acetyl groups in their repeating units, but naturally occurring glycosaminoglycans exhibit various molecular compositions and therefore biological activities (Bourin & Lindahl, 1993; Mulloy, Mourão, & Gray, 2000; Rabenstein, 2002). To overcome this limitation, diverse glycosaminoglycan–analogues have been realized by sulfating other natural polysaccharides.

Cellulose, chitosan, pullulan, colominic acid and others, which can be obtained in huge quantities with specific molecular weights, have been used as starting materials for the synthesis of such glycosaminoglycan–analogues (Alban, Schauerte, & Franz, 2002; Groth & Wagenknecht, 2001; Kunou, Koizumi, Shimizu, Kawase, & Hatanaka, 2000; Xing et al., 2004). For example, cellulose as a renewable resource has been applied for years for the synthesis of many derivatives, such as cellulose acetate, carboxymethyl cellulose, and cellulose sulfate (CS) (Fischer et al., 2008; Heinze & Koschella, 2005; Hettrich, Wagenknecht, Volkert, & Fischer, 2008; Philipp & Wagenknecht, 1983).

As a water-soluble derivative, CS exhibited diverse biological effects, such as inhibition against human immune deficiency virus (HIV) infection and anticoagulant activity (Groth & Wagenknecht, 2001; Yamamoto et al., 1991). CS with high degree of substitution (DS) could bond b-FGF in the same way as natural heparin and could strongly promote FGF–induced proliferation (Peschel et al., in press; Zhang, Peschel, Brendler, Groth, & Fischer, 2009).

In order to prepare CS with different substitution patterns, various sulfation strategies have been developed. CS can be synthesized through either heterogeneous or homogeneous sulfation of cellulose or some cellulose derivatives. Possible solvents can be N,N-dimethylformamide (DMF), pyridine, dimethyl sulfoxide, \textsubscript{2}N\textsubscript{2}O\textsubscript{4} DMF system as well as ionic liquids. Also various sulfating agents have been applied for the sulfation, such as \textsubscript{3}SO\textsubscript{4}, chlorosulfuric acid and \textsubscript{3}SO\textsubscript{3} DMF complex (Baumann, Richter, Klemm, & Faust, 2000; Philipp, Nehls, & Wagenknecht, 1987; Wang, Li, Zheng, Normakhmatov, & Guo, 2007). Recently, procedures for sulfation of cellulose as acetylsulfate or as homogeneous sulfation in ionic liquids have been developed (Gericke, Liebert, & Heinze, 2009; Hettrich et al., 2008; Wang, Li, Xiao, & Wu, 2009; Zhang et al., 2009).

Another interesting cellulose derivative, regioselectively oxidized cellulose, also attracts more attention now. The selec-

```
0144-8617/$ – see front matter © 2010 Published by Elsevier Ltd.
doi:10.1016/j.carbpol.2010.04.027
```
tively oxidized cellulose can be obtained through oxidation by the Na\textsubscript{2}O\textsubscript{2}/H\textsubscript{2}PO\textsubscript{4}/NaBH\textsubscript{4} system or by the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system (Besemer, de Nooy, & van Bekkum, 1998; Chang & Robyt, 1996). The TEMPO-mediated oxidation was normally carried out in aqueous systems at pH 10–11 at room temperature (RT) or 0 °C (Besemer et al., 1998; Chang & Robyt, 1996; Isogai & Kato, 1998). TEMPO-oxidized cellulose was found to be able to form nanofibers and can be used as ion absorber (Saito & Isogai, 2005; Saito, Kimura, Nishiyama, & Isogai, 2007).

The product after a TEMPO-mediated oxidation was predominantly not soluble in water and the recovery of this water-insoluble fraction could be higher than 80% (Saito & Isogai, 2004). The TEMPO-mediated oxidation occurred selectively on the primary hydroxyl groups. Both carboxylate and aldehyde groups were introduced into the surfaces and disordered regions of cellulose I crystallites, while no oxidation was found inside the cellulose I crystal lattices (Saito & Isogai, 2004, 2005). Even after prolonged oxidation duration up to 24 h at pH 10–11, the native cellulose did not become soluble in aqueous media (Isogai & Kato, 1998). But if the TEMPO-mediated oxidation was applied to regenerated, mercerized or filtered, dialyzed in deionized water and lyophilized.

2. Experimental

2.1. Materials

Microcrystalline cellulose (MCC) with an average degree of polymerisation (DP) of 276 was provided by J. Rettenmaier & Söhne GmbH (Rosenberg, Germany). Pulp V-81 (AC, with 97.0% alpha cellulose) with an average DP of 1180 was purchased from Buckeye Technologies Inc. (Memphis, USA). N,N-dimethylformamide (DMF) was freshly distilled before use and deionized water was applied in all experiments. Applied chemicals were all of analysis grade and used as received.

2.2. Synthesis

2.2.1. Preparation of CS and oxidation of CS

The sulfation of cellulose was carried out as described in Zhang et al. (2009). For a typical acetylsulfation, 2.5 g cellulose were suspended in 125 ml anhydrous DMF at RT for over 14 h. The reaction agent consisting of chlorosulfuric acid and 12 ml acetic anhydride in DMF was dropped into the cellulose suspension under vigorous stirring within 15 min. After that, the temperature was raised to 50 ℃ and the mixture was kept at 50 ℃ for 5 h. Then, the solution was cooled down to RT and poured into a saturated solution of anhydrous sodium acetate in ethanol. The precipitate was gained through centrifugation and washed with a 4% sodium acetate solution in ethanol. After a deacetylation with 1 M ethanolic solution of sodium hydroxide for 15 h, the pH value was adjusted to 7.5–8.0 with acetic acid/ethanol (50/50, w/w). The product was then washed with ethanol, dissolved in water, filtered, dialyzed in deionized water and lyophilized.

In order to introduce carboxyl groups in CS, a TEMPO-mediated oxidation of CS was executed. 0.5 g dried CS was dissolved in 30 ml water and the oxidation agent consisting of TEMPO, NaBr and 12% aqueous NaOCl (0.05 ml/mg TEMPO) in water (1 ml/mg TEMPO) was prepared under continuous stirring, according to the molar ratios between them and residual primary hydroxyl groups. The oxidation was started after slowly adding the oxidation agent to the solution of CS under stirring. The remaining NaOCl was dropped into the solution to maintain the pH at 10.5 ± 0.1. After the addition of the rest of NaOCl, the pH was maintained constant at 10.5 ± 0.1 for a designated duration using 0.5 M aqueous NaOH solution. Thereafter, 5 ml methanol were added to stop the oxidation and the pH was adjusted to 7.5 with 0.5 M aqueous HCl solution. Then, the system was poured into 5 volumes of ethanol and centrifuged after stirring for 0.5 h. The precipitate was washed three times with ethanol/water (80/20, v/v), dissolved in water, filtered, dialysed against deionized water and lyophilized.

2.2.2. Preparation of COC and acetasulfation of COC

5 g MCC in 200 ml water were mixed for 3 min with a high speed Ultra-Turrax homogenizer and then stirred with a magnetic stirrer. The oxidation agent consisting of 0.077 g TEMPO, 1.557 g NaBr and 4 ml 12% aqueous NaOCl solution in 25 ml water was prepared under continuous stirring until complete dissolution. The oxidation was started after slowly adding the oxidation agent to the cellulose suspension or to the solution of CS under stirring. The other 35 ml NaOCl solution were dropped into the solution to maintain the pH at 10.5 ± 0.1. After adding the NaOCl solution, the pH was maintained constant for 0.5 (yielding product COC1) and 4 (yielding product COC2) hours using 0.5 M aqueous NaOH solution. Thereafter, 7.5 ml of methanol were added to stop the oxidation and the pH was then adjusted to 7.5 with 0.5 M aqueous HCl solution. The insoluble fraction and the supernatant were separated by centrifugation. The insoluble fraction was then washed three times with 150 ml ethanol/water (50/50, v/v) and then lyophilized. The product was then washed with ethanol, water-insoluble 6-carboxyl cellulose (COC). The supernatant was precipitated in 800 ml ethanol and the precipitate was washed twice with ethanol/water (95/5, v/v), twice with ethanol and then lyophilized. The obtained product was β-1,4-linked polyglucuronic acid in form of sodium salt and the primary hydroxyl groups were fully converted into carboxytyl groups.

In order to introduce the sulfate groups in COC, acetasulfation was carried out as described in Section 2.2.1. Briefly, 1.5 g COC in 50 ml DMF were converted by reaction mixture consisting of chlorosulfuric acid or sulfuric acid and 7.05 ml acetic anhydride in DMF. After sulfation, the products were then prepared as in Section 2.2.1.

2.3. Characterization of products

2.3.1. FT Raman and 13C NMR spectroscopy

FT Raman spectra were recorded on a Bruker MultiRam spectrometer (Bruker Optik GmbH, Ettlingen, Germany) with a liquid-nitrogen-cooled Ge diode as detector. A cw-Nd:YAG-laser with an exciting line of 1064 nm was applied as light source for the excitation of Raman scattering. The spectra were recorded over a range of 3500–150 cm\(^{-1}\) using an operating spectral resolution of 3 cm\(^{-1}\) and a laser power output of 100 mW.

The 13C NMR spectra were obtained at RT using a Bruker DPX 400 spectrometer (Bruker Optik GmbH, Ettlingen, Germany) at a frequency of 100.13 MHz and with 30° pulse width, 0.3 s acquisition time and a relaxation delay of 3 s. Solutions of the samples with con-
centrations of 5% (wt.%) were prepared in D2O and scans between 5000 and 20,000 were accumulated.

2.3.2. Optical emission spectroscopy with inductively coupled plasma (ICP-OES spectroscopy)

The total contents of the elements – sodium and sulphur – can be measured with ICP-OES spectroscopy. Up to 10 mg of samples were dissolved in 10 ml deionized water and 250 µl 32% aqueous HNO3 were added. Then, the solutions of the samples were analyzed with the atomic emission spectrometer (ICP-OES) Spectro Ciros®CD (Spectro, Germany). For the purpose of determining the total contents of sodium and sulphur, wavelengths of 589.592 and 200.500 nm were used for the detection, respectively.

2.3.3. Elemental analysis

The contents of carbon, hydrogen and nitrogen were determined with Elemental Analyser vario El from Elementar (Hanau, Germany). The sulphur contents were measured with Elemental Analyser Eltra CS 500 from Eltra (Neuss, Germany). The total DS ascribed to sulfate groups (DSS) of the products ascribed to sulfation can be calculated according to the following equation:

\[
\text{Total DSS} = \frac{\text{total DSS}}{(S%/32)/C%/72)}
\]

(1)

2.3.4. Determination of contents of carboxyl groups and DSCOO

The contents of carboxyl groups in COC1 and COC2 were determined according to ASTM standard D1439-03(2008)e1 (American Society for Testing and Materials, 2008).

The DS derived from carboxyl groups (DSCOO) in COCS could be calculated according to the following equations that are based on the change of the amounts of primary hydroxyl groups for the COCS (Eq. (II)) or the sodium and sulphur contents of COCS with sulfate groups at 3-O-position (Eq. (III)):

\[
\text{DSCOO} = \frac{\text{DS6-OH before oxidation} - \text{DS6-OH after oxidation}}{\text{A60 ppm}} - \frac{\text{A67 ppm}}{(II)}
\]

\[
\text{DSCOO} = \frac{\text{DS6-OH before oxidation} - \text{DS6-OH after oxidation}}{\text{A60 ppm}} \times \frac{\text{A60 ppm}}{\text{A67 ppm}}
\]

(II)

\[
\text{DSCOO} = \frac{\text{[(Na%/23)/(S%/32)] - 1}}{(\text{total DSS})}
\]

(III)

The contents of carboxyl groups before oxidation and after oxidation, determined by elemental analysis and 13C NMR spectroscopy; DS6; DS at C6 after oxidation; A60 ppm; A67 ppm: the area under the peaks at 60 and 67 ppm after integration of 13C NMR spectra of the COCS.

2.3.5. Determination of number-average degrees of polymerisation (DPn)

The DPn were determined by size exclusion chromatography (SEC) with PSS Suprema 3000 and 100 Å columns (Polymer Standards Service GmbH, Mainz, Germany). The detection was carried out with a Waters 410 reflective index (RI) detector (Waters Corporation, Milford, MA) and 0.1 mol/l NaCl aqueous buffer was used as mobile phase. The columns have been calibrated with pullulan standards (Sigma–Aldrich, Buchs, Switzerland). Empower Pro software (Waters Corporation, MA) was used for the analysis.

2.4. Determination of the biological activity

The biological activity of chosen COCS was investigated with cultures of 3T3-L1 fibroblasts (ATCC, Manassas, USA) in the presence as well as in the absence of the growth factor FGF-2 (Invitrogen, Karlsruhe, Germany). Cells were seeded at a density of 10,000 cells/well in black 96 well plates in Dulbecco’s modified Eagle medium (Biochrom AG, Berlin, Germany) supplemented with 10% fetal bovine serum (FBS, Biochrom) and 1% penicillin-streptomycin-fungizone (Promocell, Heidelberg, Germany) in a 37 °C humidified atmosphere of 5% CO2 and 95% air with 24 h culture. Then, the cell-loss derivatives were applied to the cells in DMEM without FBS at a concentration between 1 and 1000 μg/ml for 48 h in the presence or absence of 10 ng FGF-2/ml. The proliferation of the cells was determined using the Quant-iT™ PicoGreen dsDNA quantification assay (Invitrogen). The fluorescent intensity was measured by a plate reader with excitation and emission wavelength of 485 and 520 nm, respectively (Fluostar Optima BMG Labtech, Offenburg, Germany).

3. Results

3.1. Preparation of CS and COCS

CS was prepared as described before and the total as well as partial DSs attributed to sulfation were determined (Zhang et al., 2009). While only total DSs of CS could be determined with elemental analysis, the partial DS6 could be analyzed with 13C NMR spectroscopy (Nehls, Wagenknecht, Philipp, & Stscherbina, 1994). CS with total DS6 between 0.39 and 0.94 according to elemental analysis was obtained as starting material for further oxidation. The primary hydroxyl groups were predominantly sulfated with application of chlorosulfuric acid during the acetasulfation at 50–70 °C (Table 1). The DS62 remained very low with a use of 0.55 or 0.85 mol chlorosulfuric acid per mol AGU, while it increased significantly with utilization of 3 mol chlorosulfuric acid per mol AGU. Thus, it can be proposed that the chlorosulfuric acid preferred a selective sulfation of primary hydroxyl groups during the acetasulfation and a controlled introduction of sulfate groups into 6-O-position could be conducted.

The CS dissolved in water could be oxidized and Fig. 1 illustrates the 13C NMR spectra of chosen CS, COCS and β-1,4-linked polyglucuronic acid. Based on the spectra of CS and COCS, the sig-
nals at 67 ppm reflecting the C6 with sulfate groups are still visible after oxidation and new signals at 175.4 ppm represent the carboxyl groups at C6.

The TEMPO-mediated oxidation results in conversion of the primary hydroxyl groups into carboxyl groups. According to Fig. 1e, the β-1,4-linked polyglucuronic acid with complete oxidation of the remaining primary hydroxyl groups shows no peak at 60 ppm and the new signals around 175.3 ppm indicate the presence of carboxyl groups (Isogai & Kato, 1998). Alike, no peak can be found at 60 ppm in the spectrum of COCS2 and therefore, a conclusion that the residual primary hydroxyl groups in COCS2 were totally oxidised can be drawn (Fig. 1d). However, the remaining primary hydroxyl groups of COCS7 and COCS8 were not entirely converted according to the spectra b and c in Fig. 1. Because although a new small peak at 175.4 ppm attributed to carboxyl groups appeared, a small peak at 60 ppm ascribed to C6 with hydroxyl groups can still be seen.

The D_{SCO} of COCS according to the amounts of carboxyl groups can be determined (Table 2). If the amounts of primary hydroxyl groups before and after the oxidation are simply analyzable, the amounts of introduced carboxyl groups can be calculated based on this difference. After TEMPO-mediated oxidation, COCS with D_{SCO} between 0.10 and 0.67 were synthesized (Table 2).

According to Table 2, the COCS from MCC exhibit lower D_{SCO} up to 0.15. Even when the oxidizing agents were applied in doubled amounts, no obvious increase could be obtained (COCS7 and 8). In contrast, the D_{SCO} of COCS from AC could be raised when more oxidizing agents were used (COCS1 and 2). A complete oxidation of residual hydroxyl groups was realized (COCS2 with D_{SCO} of 0.67).

However, during TEMPO-mediated oxidations of CS after various oxidation durations, no significant reduction of total or partial DS$_6$ can be observed (Table 2).

FT Raman spectroscopy provides some other features when applied to characterize the obtained products. Fig. 2 shows the

Table 1

Preparation of CS with chlorosulfuric acid and 8 mol acetic anhydride/mol AGU for 5 h.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Starting materials</th>
<th>Molar ratioa</th>
<th>T (°C)b</th>
<th>D_{S_2} (13C NMR)c</th>
<th>Total DS$_6$ (elemental analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>AC</td>
<td>0.85</td>
<td>50</td>
<td>0.47</td>
<td>0.60</td>
</tr>
<tr>
<td>CS2</td>
<td>AC</td>
<td>0.85</td>
<td>60</td>
<td>0.33</td>
<td>0.42</td>
</tr>
<tr>
<td>CS3</td>
<td>AC</td>
<td>0.55</td>
<td>70</td>
<td>0.31</td>
<td>0.39</td>
</tr>
<tr>
<td>CS4</td>
<td>AC</td>
<td>0.85</td>
<td>70</td>
<td>0.34</td>
<td>0.41</td>
</tr>
<tr>
<td>CS5</td>
<td>MCC</td>
<td>0.85</td>
<td>50</td>
<td>0.48</td>
<td>0.59</td>
</tr>
<tr>
<td>CS6</td>
<td>MCC</td>
<td>0.85</td>
<td>70</td>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>CS7</td>
<td>MCC</td>
<td>3</td>
<td>50</td>
<td>0.73</td>
<td>0.94</td>
</tr>
</tbody>
</table>

a Molar ratio in mol chlorosulfuric acid per mol AGU.
b T (°C): reaction temperature in °C.
c Total DS$_6$ = total DS$_2$ − DS$_{S_6}$.

Table 2

Preparation of COCS from CS in water at RT with a pH value of 10.5 ± 0.1.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Starting cellulose/CS</th>
<th>Molar ratioa</th>
<th>t (h)b</th>
<th>D_{S_2} (13C NMR)c</th>
<th>Total DS$_6$c</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCS1</td>
<td>AC/CS2</td>
<td>0.05</td>
<td>3</td>
<td>0.06</td>
<td>0.40</td>
</tr>
<tr>
<td>COCS2</td>
<td>AC/CS2</td>
<td>0.1</td>
<td>3</td>
<td>0.04</td>
<td>0.37</td>
</tr>
<tr>
<td>COCS3</td>
<td>AC/CS3</td>
<td>0.05</td>
<td>3</td>
<td>0.06</td>
<td>0.30</td>
</tr>
<tr>
<td>COCS4</td>
<td>AC/CS4</td>
<td>0.05</td>
<td>3</td>
<td>0.04</td>
<td>0.36</td>
</tr>
<tr>
<td>COCS5</td>
<td>AC/CS4</td>
<td>0.05</td>
<td>20</td>
<td>0.02</td>
<td>0.37</td>
</tr>
<tr>
<td>COCS6</td>
<td>MCC/CS5</td>
<td>0.05</td>
<td>3</td>
<td>0.06</td>
<td>0.53</td>
</tr>
<tr>
<td>COCS7</td>
<td>MCC/CS7</td>
<td>0.05</td>
<td>1</td>
<td>0.19</td>
<td>0.91</td>
</tr>
<tr>
<td>COCS8</td>
<td>MCC/CS7</td>
<td>0.1</td>
<td>1</td>
<td>0.21</td>
<td>0.89</td>
</tr>
<tr>
<td>COCS9</td>
<td>MCC/CS7</td>
<td>0.05</td>
<td>3</td>
<td>0.20</td>
<td>0.92</td>
</tr>
</tbody>
</table>

a Molar ratio in mol oxidizing agents per mol primary hydroxyl groups.
b t: reaction duration in hours.
c $D_{\text{S}_2}, D_{\text{SCO}}$: demonstrate the partial DS of sulfate groups at 2- and 6-O-positions and DS of carboxyl groups at C6. Total DS$_6$ were determined by elemental analysis. D_{S_2} was determined by 13C NMR spectroscopy and D_{S_6} was calculated by the equation: $D_{\text{S}_6} = total D_{\text{S}_2} - D_{\text{S}_6}$.

Fig. 2. FT Raman spectra (3200–800 cm$^{-1}$) of (a) MCC, (b) CS7, (c) COCS8, (d) COCS2 and (e) β-1,4-linked polyglucuronic acid.
Furthermore, the small peak at 2969 cm\(^{-1}\) attributed to stretching vibrations of CH\(_2\) groups in the spectrum of cellulose disappeared within the spectra of \(\beta\)-1,4-linked polyglucuronic acid, while it was still visible at 2957 cm\(^{-1}\) in the spectrum of COCS7 and COCS8. Even within the spectrum of COCS2, there is still a small shoulder with much lower intensity near the peak at 2907 cm\(^{-1}\). The disappearance of the CH\(_2\)-signal is due to the conversion of CH\(_2\)OH groups into COONa groups. Together with the reduction of the CH\(_2\)-signal, the peak ascribed to stretching vibrations of CH groups at 2896 cm\(^{-1}\) is only 74 (COCS7 and 9). For the CS4 from AC has a DP\(_n\) of 306, but DP\(_n\) of the yielded COCS12 obviously possessed no aldehyde groups due to the absence of both small peaks (Kato, Matsuo, & Isogai, 2003). Using \(^{13}\)C NMR spectroscopy, ICP-OES spectroscopy and elemental analysis, DSS\(_2\), DSS\(_5\), total DSS and DSCOO can be determined with acetic anhydride. In Fig. 4, the \(^{13}\)C NMR spectra of COCS from COC were presented. The signal at 175.4 ppm is ascribed to the carboxyl groups and the signal at 67 ppm derives from C6 with sulfate groups at 6-O-position. Other peaks at 80 and 82 ppm can be seen with sulfation at 2-O- and 3-O-positions (Zhang et al., 2009). In addition, differences between the spectra of prepared COCS in the range of 160 and 180 ppm can be observed. In spectra of COCS10 and 11, two small peaks beside the peak at 175.4 ppm are existent, which are due to C6 of aldehyde groups, while the COCS12 obviously possessed no aldehyde groups due to the presence and absence of the growth factor FGF-2. With 1 mg/ml of the derivatives and 10 ng/ml of FGF-2, a significant difference could be seen between the two samples, in that COCS2 significantly suppressed the proliferation and COCS9 showed an increase (Fig. 5). Therefore, only COC9 was used for a subsequent concentration-dependent approach. Here, COCS9 increased the proliferation

\[
\text{Table 3}
\]

<table>
<thead>
<tr>
<th>Samples</th>
<th>Starting material</th>
<th>Oxidation duration (h)</th>
<th>Yields</th>
<th>Contents of carboxyl groups</th>
<th>DS_{COO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>COC1</td>
<td>MCC</td>
<td>0.5</td>
<td>91.11%</td>
<td>0.75 mmol/g</td>
<td>0.124</td>
</tr>
<tr>
<td>COC2</td>
<td>MCC</td>
<td>4</td>
<td>90.46%</td>
<td>0.69 mmol/g</td>
<td>0.114</td>
</tr>
</tbody>
</table>

can be found and the new signals appear around 175 ppm, which represent the signals of carbonyl groups on C6 (Fig. 1e).

COC can be acetosulfated by chlorosulfuric acid or sulfuric acid with acetic anhydride. In Fig. 4, the \(^{13}\)C NMR spectra of COCS from COC were presented. The signal at 175.4 ppm is ascribed to the carboxyl groups and the signal at 67 ppm derives from C6 with sulfate groups at 6-O-position. Other peaks at 80 and 82 ppm can be seen with sulfation at 2-O- and 3-O-positions (Zhang et al., 2009). In addition, differences between the spectra of prepared COCS in the range of 160 and 180 ppm can be observed. In spectra of COCS10 and 11, two small peaks beside the peak at 175.4 ppm are existent, which are due to C6 of aldehyde groups, while the COCS12 obviously possessed no aldehyde groups due to the presence and absence of the growth factor FGF-2. With 1 mg/ml of the derivatives and 10 ng/ml of FGF-2, a significant difference could be seen between the two samples, in that COCS2 significantly suppressed the proliferation and COCS9 showed an increase (Fig. 5). Therefore, only COC9 was used for a subsequent concentration-dependent approach. Here, COCS9 increased the proliferation.
in the presence of FGF-2 at a concentration of 1 mg/ml significantly, lower concentrations than 500 μg/ml provoked a slight decrease (Fig. 5). Without the addition of FGF-2, COCS9 showed only a slight inhibition, with 1 mg/ml a significant suppression of proliferation could be seen (Fig. 5).

4. Discussion

According to the data of various CS in Table 1, the primary hydroxyl groups of cellulose were preferred to be sulfated and the total DSS increased with rising amount of sulfating agent, while higher reaction temperature resulted in smaller total DSS, comparing CS1, 2 and 3 or CS5, 6 and 7. It can be assumed that an intensive desulfation took place under high temperature in comparison to a low temperature (Zhou et al., 2009).

Besides, CS (CS5 and 6) from MCC and CS (CS1 and 4) from AC prepared under equal reaction conditions show analogue total DSS, although their starting materials demonstrate different DP. In this study, cellulose AC and MCC have an average DP of 1180 and 276, respectively, but the total DSS after acetosulfation with sulfating agent and 8 mol acetic anhydride per mol AGU. De Nooy et al., 1996; Isogai & Kato, 1998; Shibata, Yanagisawa, & Isogai, 2006). Some reasons, such as β-elimination, have been proposed, but a remarkable decrease in DP with was observed with combination of TEMPO/NaBr/NaClO at pH 11 and hydroxyl radicals formed could be the primary reason for this depolymerisation (Shibata & Isogai, 2003).

Based on the results presented in Table 2, double amount of TEMPO/NaBr/NaClO resulted in an increase of DSSCOO, but the DPn of the products becomes much lower (COCS7 and 8 in Fig. 3). On the other hand, the prolonged oxidation from 1 to 3 h (COCS7 and 9) or from 3 h to even 20 h (COCS4 and 5) under other equal conditions caused no significant reduction in DPn of the products with various total DSS (Fig. 3), but the DSSCOO was lowered (Table 2). Thus, both oxidation duration and the amounts of oxidizing agents could affect the oxidation of CS and therefore, the characteristics of COCS.

Table 4

<table>
<thead>
<tr>
<th>Samples</th>
<th>Starting materials</th>
<th>t (h)</th>
<th>Molar ratio</th>
<th>DSSCOO</th>
<th>DSS (13C NMR)</th>
<th>Total DSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCS10</td>
<td>COC1</td>
<td>5</td>
<td>1.5</td>
<td>0.1</td>
<td>0.12</td>
<td>0.70</td>
</tr>
<tr>
<td>COCS11</td>
<td>COC2</td>
<td>6</td>
<td>2.1</td>
<td>0.08</td>
<td>0.15</td>
<td>0.58</td>
</tr>
<tr>
<td>COCS12</td>
<td>COC1</td>
<td>5</td>
<td>1.5</td>
<td>0.06</td>
<td>0.28</td>
<td>0.78</td>
</tr>
</tbody>
</table>

	COSS12	COC1	5	1.5	0.06	0.28	0.78
	COCS11	COC2	6	2.1	0.08	0.15	0.58
	COCS10	COC1	5	1.5	0.1	0.12	0.70

* t: reaction duration in hours.

** DSS0,5 are the partial DS at the corresponding positions which were determined by 13C NMR spectroscopy. Total DSS was determined by elemental analysis. The DSSCOO was calculated according to ICP-OES spectroscopy.

Fig. 5. Proliferation of fibroblasts with COCS. Proliferation was measured by incubation of the 3T3-L1 fibroblast cells with different concentrations of COCS with or without FGF-2 for 48 h. (A) 1 mg of COCS2 or COCS9 was incubated together with 10 ng FGF-2/ml. (B) 1 μg/ml up to 1 mg/ml of COCS9 was incubated with or without 10 ng FGF2/ml. Data are expressed as percentage of the control with or without 10 ng FGF-2/ml, respectively. Data represent means of 6 wells ± S.E., *p < 0.02; **p > 0.0001 compared to the control.
On account of the fact that the DP_S stays constant even after long time oxidation, whereas the $DSCOO$ decreases, it can be concluded that a subsequent complete depolymerisation of the once-formed oxidized cellulose chains or a split of the already oxidized anhydroglucose units (AGU) took place (Isogai et al., 2009).

The depolymerisation of CS during the oxidation could result in diverse by-products with much smaller molecular weights or even gluconic and hexenuronic acid and these small molecules could be afterwards eliminated in the washing process (Saito, Yanagisawa, & Isogai, 2005).

In contrast to the oxidation of CS, the TEMPO-mediated oxidation of cellulose resulted at least in a water-soluble and a water-insoluble fraction (Da Silva Perez et al., 2003). The water-insoluble fraction forms the much larger one and can be separated by centrifugation. The water-soluble fraction was found to be completely oxidized cellulose-β-1,4-linked polyglucuronic acid (Figs. 1e and 2e), while the water-insoluble fraction consisted of COC with a low content of carboxyl groups. This COC could be acetosulfated and a reduction in the amounts of carboxyl groups can be found after the sulfation. A possible explanation is the hydrolysis of cellulose chains in small molecules with followed separation as discussed above. The primary hydroxyl groups were primarily sulfated in comparison to secondary hydroxyl groups (Table 3). The utilization of sulfuric acid as sulfating agent resulted in a higher total DSS and no signals attributed to the aldehyde groups can be observed within the 13C NMR spectrum of corresponding COCS (Fig. 5). These results indicate the stronger sulfation and depolymerisation effects of the applied sulfuric acid in comparison to chlorosulfuric acid.

The effects of sulfated polysaccharides and polymers in relationship to growth factors on the proliferation and differentiation of cells have been investigated previously by other groups (Hatanaka, Ohtsuki, & Kunou, 1994; Leali et al., 2001; Liekens et al., 1999). In the present examination, COCS with sulfate and carboxyl groups at 6-O- and C6-position were applied. For COCS which demonstrate an overall DS of 1.00 at C6-position with a DSS6 of 0.33 and a low content of carboxyl groups, this COC could be acetylsulfated and a reduction in the amounts of carboxyl groups can be found after the sulfation. A possible explanation is the hydrolysis of cellulose chains in small molecules with followed separation as discussed above. The primary hydroxyl groups were primarily sulfated in comparison to secondary hydroxyl groups. An acetosulfation of COC could be conducted with a low content of carboxyl groups. This COC seemed not to affect the DSS and the residual primary hydroxyl groups in CS are ready to be oxidized. The measure-ment of molecular weights of chosen CS and COCS demonstrated a significant decrease of DP_N after TEMPO-mediated oxidation. The utilization of more oxidizing agents reduced the DP_N more intensively than the oxidation duration

Another way started with TEMPO-mediated oxidation of cellulose leading to COC with low content of carboxyl groups and β-1,4-linked polyglucuronic acid with complete oxidation of primary hydroxyl groups. An acetasulfation of COC could be conducted to synthesize COCS. The use of sulfuric acid led to higher total DS_S and a stronger reduction of $DSCOO$ in comparison to chlorosulfuric acid.

Finally, COCS with higher contents of sulfate groups instead of carboxyl groups was found to be able to promote significantly the proliferation in the presence of FGF-2.

Acknowledgements

The financial support from German Research Foundation (Deutsche Forschungsgemeinschaft, Germany, grants: FI755/4–1 and FI755/4–2, GR1290/7–1 and GR1290/7–2) is gratefully acknowledged and the authors wish to thank Dr. Bern Volkert from IAP (Golm, Germany) for the determination of carboxyl groups.

References

Hatanaka, K., Ohtsuki, T., & Kunou, M. (1994). Effects of synthetic polyanions on 3T3 fibroblasts in the presence of FGF-2 than carboxyl groups. Similar conclusions have been drawn from a strong increase of the effect of FGF-2 at lower concentrations with other highly sulfated compounds (Kunou & Hatanaka, 1995). Possibly, a higher $DSCOO$ of COCS might be required to show a substantial mitogenic activity. Investigations with other growth factors than FGF-2 that show a cooperative activity with heparin or heparan sulfates have to be performed to find out if COCS has other biological effects with respect to regulation of proliferation, differentiation and function of cells.

5. Conclusion

Sulfate and carboxyl groups were regioselectively introduced into the AGU of cellulose yielding various products: CS, COC, β-1,4-linked polyglucuronic acid and COCS. Diverse substitution patterns and DS were achieved during two synthesis routes.

In one way, various CS with predominant sulfation at 6-O-position were prepared and the TEMPO-mediated oxidation was executed on them to introduce carboxyl groups. The DP values of used cellulose seemed not to affect the DS_S, and the residual primary hydroxyl groups in CS are ready to be oxidized. The measurement of molecular weights of chosen CS and COCS demonstrated a significant decrease of DP_N after TEMPO-mediated oxidation. The utilization of more oxidizing agents reduced the DP_N more intensively than the oxidation duration.

In another way started with TEMPO-mediated oxidation of cellulose leading to COC with low content of carboxyl groups and β-1,4-linked polyglucuronic acid with complete oxidation of primary hydroxyl groups. An acetasulfation of COC could be conducted to synthesize COCS. The use of sulfuric acid led to higher total DS_S and a stronger reduction of $DSCOO$ in comparison to chlorosulfuric acid.

Finally, COCS with higher contents of sulfate groups instead of carboxyl groups was found to be able to promote significantly the proliferation in the presence of FGF-2.

