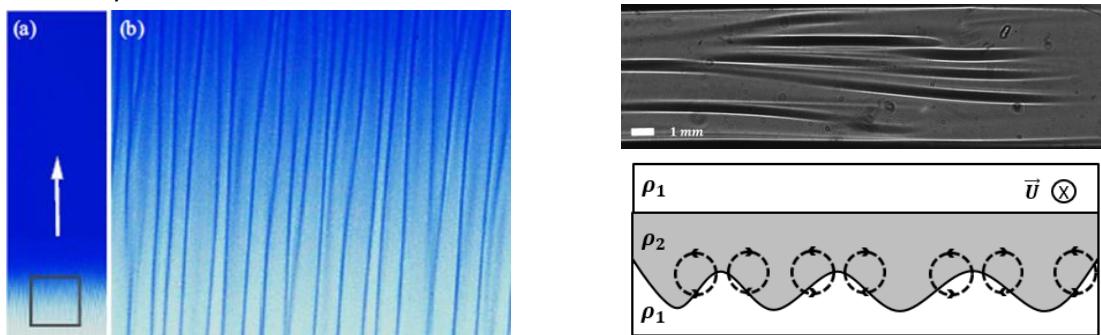


Prof. Dr. rer. nat. et Ing. habil.

Kerstin Eckert


Kontakt: Yorgos Stergiou

E-Mail: g.stergiou@hzdr.de

Experimental investigation of a buoyancy driven instability during a horizontal miscible displacement

Diplomarbeit/Beleg/SHK

Flow instabilities comprise a field of research that constantly calls for new challenges. They are present in numerous technological applications (porous media, reactive mass transfer, CO₂ capturing). The potential intern/diplomand will be asked to experimentally investigate a density-driven instability in horizontal Hele-Shaw geometries. The main quest would be to decipher the effect of the geometry, fluid properties (μ, ρ) and flow conditions (Pe) on the existence and scaling of the instability.

The trainee is expected to:

- Conduct experiments with parameter variation of the flow conditions and fluid properties.
- Image post-processing.
- Comparison with existing experiments & literature.

Requirements:

- Study in process engineering, chemical engineering, mechanical engineering (or relative field)
- Basic fluid dynamics and transport phenomena knowledge
- Experience in flow visualization and image processing is highly valued but not a prerequisite
- Motivation, interest in the field, lab skills, ability to solve problems, good academic track records

Conditions:

- duration min. 3 month, start: ca. Apr 2022, workplace: TU Dresden

References

Postadresse (Briefe)

TU Dresden, 01062 Dresden

Postadresse (Pakete u.ä.)

TU Dresden

Helmholtzstraße 10

01069 Dresden

Besucheradresse

Sekretariat:

Helmholtzstr. 14

Merkel-Bau

EG, Zi. 17

Internet

<https://tu-dresden.de/ing/maschinenwesen/fvu/tpg>
www.hzdr.de

[1] Haudin et al. (2014) Phys. Fluids **26**(4) 044102 doi.org/10.1063/1.4870651