

Entwicklung Kritikalitätstester

Problem:

schwer zugängliche Spaltzonen erfordern einen hohen Zeit- und Personalaufwand für die Präsentation des Kernbrennstoffs zur Kernmaterialkontrolle

Herstellen des überkritischen Reaktorzustands durch den Reaktoroperator

Inspektionsaufgabe: Ist der deklarierte Kernbrennstoff im Reaktor?

TU Dresden, 30.06.2016

Messung der Neutronenflussdichte innerhalb oder außerhalb des Reaktors

Unabhängiges Messgerät

(Vielkanalanalysator als

Multiscaler)

Entscheidung über den vorgeführten Reaktorzustand

Auswertealgorithmus TREND 95

<u>Überkritischer Zustand bestätigt:</u> mindestens die kritische Masse ist im Reaktor vorhanden

Auswertealgorithmus TREND 95

Messung des exponentiellen Leistungsanstiegs mit stabiler Reaktorperiode

Logarithmierung des Ergebnisses und Prüfung der Linearität innerhalb der Fehlergrenzen

Trainingskurse für Inspektoren der IAEA zur Anwendung des Kritikalitätstesters

Erweiterung und Verifikation von TRAMO zur Lösung von gekoppelten Neutronen/Gammatransportproblemen und Überprüfung von Kerndatenbibliotheken

Hintergrund der Untersuchungen:

- Aktuelle Erkenntnisse belegen einen bisher vernachlässigten Beitrag der Gammastrahlung zur Versprödung von Reaktormaterialien.
- Die Berechnung von Gammafeldern stellte einen Schwachpunkt in der Reaktormaterialdosimetrie dar und erforderte die Weiterentwicklung von Transportberechnungsmethoden sowie ihre Verifizierung durch Experimente, wobei die Energiespektren der Neutronen- und Gammastrahlung die maßgebliche Wichtungsfunktion sind.

DFG-Verbundprojekt zwischen:

- FZD (IFS, Abt. FWST)
- HS Zittau/Görlitz (FB MW)
- TU Dresden (IKTP)
- TU Dresden (WKET)

- ⇒ Projektleitung, Monte-Carlo-Rechnungen
- ⇒ Bestrahlungen am ZLFR, Einsatz von TLD
- ⇒ Neutronen- und Gammaspektroskopie (NE213-Szintillator)
- Bestrahlungen am AKR, absolute Monitorierung, Aktivierungssonden

Inhalt des Projektes:

- Aufbau von variablen Anordnungen aus Eisen-Wasser-Schichten am AKR der TUD und dem ZLFR in Zittau zur Druckbehältersimulation
- Messung hochenergetischer Gamma- und Neutronenspektren mit einem NE213-Spektrometer und **Absolut**vergleich zu Monte-Carlo-Rechnungen (MCNP und TRAMO)
- Absolutbestimmung thermischer Neutronenflussdichten mit einem He3-Detektor einschließlich Absolutkalibrierung des Detektors

Beispiele absolut gemessener Gammaspektren hinter Schichtanordnungen am AKR und Vergleich mit MCNP-Rechnungen

Figure 2. Comparison of neutron flux spectra

Figure 3. Comparison of gamma flux spectra

Vergleich von Kerndatenbibliotheken

Comparison of neutron (left) and gamma (center and right) fluxes measured and calculated on absolute scale for 3 thicknesses of iron module at AKR (detector position behind module)

Absolute neutron (left) and gamma (right) fluxes calculated with MCNP using various nuclear data libraries (module 10 cm iron at AKR, position behind module)

Bestrahlungskanäle am AKR

Bestrahlungskanäle:

1 - 2	Zentralkanal	φ _{eff, max} =	= 24 mm
3 - 4	Tangentialkana	al	63 mm
5 - 6	Tangentialkana	ો	63 mm
7	Radialkanal	mindestens	130x160 mm

Gamma-Dosisleistung im Kanal 7 des AKR (65 keV - 2 MeV) im offenen Kanal

Gamma-Spektrumsergebnisse (Rechnung und Experiment)

TU Dresden, 30.06.2016

G-AKR.grf 23.01.2006 13

Vielen Dank für Ihre Aufmerksamkeit

Äquivalentdosisleistungen

Bestrahlungsposition	maximale Probenabmessung	E (Neutronen)	E (Gamma)
1	φ 24 mm	40 Sv/h	5,5 Sv/h
2	φ 60 mm	4,4 Sv/h	-
3	п	1,8 Sv/h	-
4	13 x 16 cm ²	8,3 Sv/h	0,5 Sv/h
5	φ 20,5 cm	1,5 Sv/h	150 mSv/h
6	φ 47,5 cm	120 mSv/h	-
7	keine Begrenzung	30 mSv/h	10 mSv/h
8	"	20 mSv/h	-
10	"	10 mSv/h	-
11	φ 32 mm	0,9 mSv/h	-

Maximal erreichbare Äquivalentdosisleistungen (gerechnet für Neutronen, gemessen für Gamma) bei angezeigter Reaktorleistung von 2 Watt

Neutronen-Spektrumsergebnisse auf Zentralachse EK7 (Rechnungen MCNP)

Achse Radialkanal 7 bei 2 Watt Anzeige

Gruppen-Flussdichten für thermische und schnelle Neutronen bei 2 Watt Leistungsanzeige

Monitorierung

Absolut kalibrierte Miniaturspaltkammer FC4A:

- φ6.2 mm x 45 mm, akt. Länge 25 mm
- 212 μg (± 5 %) U-235 (93 %)

Spaltspektrum einer Neutronenquelle Cf-252 (Spontanspaltung)

Spaltspektrum einer Neutronenquelle Cf-252 (Spontanspaltung)

Spaltspektrum einer Neutronenquelle Cf-252 (Spontanspaltung)