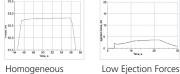


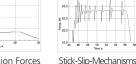
Instrumented Uniaxial Compaction Experiments on Silicon Nitride Granulates under Varied Climatic Conditions

Ulrich Klemm*, Bettina Schöne* Manfred Nebelung**, Manfred Fries**

- Technische Universität Dresden, Professorship Inorganic-Nonmetallic Materials, 01062 Dresden
- ** Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstraße 28, 01277 Dresden

The Mystery of Compaction




Both Compacts Pressed from the Same Barrel with Identical Concentrations of Additives and Moistures at the Same Temperature

Results of Instrumented Compaction

Property			Part 1	Part 2
Moisture of granulate		[%]	0.55	0.56
Compact properties	$ ho_{Diam.}$	[g/cm ³] [N/mm ²]	1.90 1.33	1.92 (0.98) end-capping
Friction	F ₂ /F ₁ μ _W μ _P F _{Ej}	[%] [kN]	82 0.110 0.390 2.2 / 3.8	61 0.278 0.391 5.5 / 19.8
Energy	A ₂ A ₄	[Nm] [Nm]	147 19	144 44
Relaxation	ΔTot Δi	[mm] [%]	0.94 83	0.86 60
Stress distribution	$\Delta\sigma_{ax}$ $ au_{max}$	[MPa] [MPa]	70 11	152 32

Characteristic Compaction and Ejection Curves

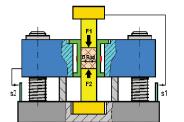


Homogeneous (Part 1)

What may be the Reason for that?

(Part 1)

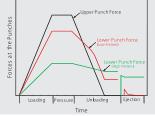
Explanation of the Mystery


(Part 2)

Instrumented Compacting Tool

Material Test Equipment

Electromechanically (250 kN), Electromechanically (2,5 kN) Optional Force and Way Drive Systems; Possibility of Ramp Driving Instrumented Inserts

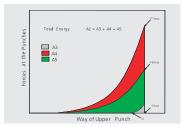

Die Materials (Hardened Steel, CPM-Steels, Tungsten Carbide) Geometry (cylindrical, Ø 9 - 25 mm), Pressure Range (20 - 600 MPa) Laboratory with Adjustable Climatic Conditions Relative Humidity 20 - 80%, Temperature 16 - 28°C

- Force at the Upper Punch F١
- Way of the Upper Punch s₁
- Force at the Lower Punch F_2
- Way of the Die (optional) S_2
- Radial Stress σ_{Rad}

System of Specific Compaction Parameters

Specific Friction Parameters

- Wall Friction Coefficient μ_W
- Powder Friction Coefficient μρ
- Radial Stress Coefficient η
- Force Transmission Quotient F₂/F
- F۸ Eiection Force


Parameters of the Compacts ρ_{G} Geometrical Density **Diametral Compressive** σ_{Dia} Strength **Elastic Relaxation** Total Axial Relaxation ΔTot Part Inside the Die Λi Part at and after Ejection Δej Δd Radial Relaxation

Distributions

Δτ

Δρ

Axial Pressure Stress Gradient $\Delta\sigma_{\text{ax}}$ Radial Pressure Stress Gradient $\Delta\sigma_{\text{rad}}$ Distribution of Shear Stresses Distribution of Density

Compaction Energies

- Total Compaction Energy A_2
- Relaxation Energy A₂
- Friction Energy A٩
- Consumed Energy A

What are the Benefits of an Instrumented Compacting Tool?

- Characterization of the Compaction Behavior Based on Well-defined Physical Parameters beyond the Empirical Level
- Evaluation of the Efficacy of Organic Binders and Lubricants; Essential for the Development of New Formulations
- Measurements of the Influences of Changing Properties of One and the Same Additive
- Monitoring of the Manufacturing Process with Respect to Reproducibility and Charge Effects
- Analyses of the Influence of Climatic Conditions on the Compaction Behavior and Properties of Green Compacts
- Study of Interactions between Powder Properties Organic Additives Parameters of Granulation Compaction and Tool Parameters -Properties of Compact and Sintered Ceramics