

Einführung in die keramische Hybridtechnik SS 2018

Dr. Lars Rebenklau, Systemintegration und AVT Abt. Hybride Mikrosysteme

Inhalt

Einordnung der Hybridtechnik

- Anwendungen, Anforderungen, ...
- Realisierungsvarianten keramischer Verdrahtungsträger

Materialien der Hybridtechnik

- Substrate / Pasten
- Druckformen

Prozess

- Siebdruck
- Thermische Prozesse

Technologie

- Einebenentechnik
- Mehrebenentechnik (cross over Technik, Komplementärdrucktechnik)

Multilayertechnik

Literaturempfehlungen zur Dickschichttechnik

Reichl: Hybridintegration

Hüthig Verlag Heidelberg; 1988

Hanke: Hybridträger

Verlag Technik Berlin; 1994

Jillek, Keller: Handbuch der Leiterplattentechnik Bd. 4

Leuze Verlag; 2004

Schramm: Einführung in die Rheologie und Rheometrie

Gebr. Haake GmbH

Vorlesungsscript

Einordnung der Hybridtechnik

Einordnung der Dickschichttechnik → Anwendung E-Technik

Plan für Heute

Keramische Technologien

Einordnung der Dickschichttechnik

"Dickschichttechnik: … Integrierte Schichtschaltungen, bei denen die Schichten vorzugsweise im Siebdruckverfahren auf keramische Träger aufgebracht und anschließend eingebrannt werden"

Reichl: "Hybridintegration" S.9

"Hybridintegration: … Realisierung und Vereinigung von Bauelementen aus unterschiedlichen Materialien und Herstellungstechnologien auf einem gemeinsamen Substrat"

Reichl: ",Hybridintegration" S.8

Was ist Dickschichttechnik ?

"keramische Leiterplatte"

Keramiksubstrat bedruckt mit Pasten eines Systems

Pasten eines Herstellers die untereinander kompatibel sind und die zusammen verarbeitet werden.

Bsp.: Praktikumsschaltkreis TUD/IAVT

> Wesentliche Vorteile gegenüber Leiterplatte:

- Thermische Leitfähigkeit
- Angepasster TCR (Silizium Keramik)
- Temperaturstabil
- Massentaugliche Fertigung möglich

Technologievergleich

Vergleichsgröße	SMT (Leiterplatte)	Dickschicht (Keramik)	Dünnschicht (Keramik)	Monolith (IC)
Miniaturisierungsgrad	-	+-	+	++
Einsatzmöglichkeiten	+	++	++	+-
Max. Verlustleistung	-	++	+-	-
Entwicklungszeit	++	+-	+	
Zuverlässigkeit	-	+	+	++
Fertigungskosten, kl. Stückzahlen	++	+-	+	
Fertigungskosten, mittl. Stückzahlen	+	+	+-	+-
Fertigungskosten, gr. Stückzahlen	-	+	-	++
Invest und Betriebskosten	++	+	-	

++, sehr gut,, -- sehr schlecht, sehr ungünstig

Quelle: Reichl, FhG IZM

Dr. Lars Rebenklau; FhG IKTS 2018

Einordnung von Elektronikprodukten

¹⁰ Fraunhofer

Technologietreiber: "Preis" -> "low cost" Anwendungen Polymerdickschichttechnik (PTF)

- Transport und Logistik
- Diebstahlskontrolle
- Milchtüte
- Fußball-WM-Karten

- Aktives Label
- Datenlogger mit gedruckter Batterie und Thermosensoren

Quelle: Dr. M. Luniak; TUD IAVT

Technologietreiber: "Einsatzgebiet und Volumen"

Quelle: Google; Suchworte: SHM+ Airplane

Technologietreiber: "Einsatzgebiet und Volumen"

Structural Health Monitoring (SHM)

SHM as aspect of Airbus 'intelligent' airframe

Quelle: Google; Suchworte: SHM+ Airplane

Technologietreiber: "Einsatzbedingungen" -> Bsp.

Automobilelektronik

Steuergeräte für Kfz

Einsatzgebiet Kfz-Elektronik

Einführung - Marktumfeld

Marktvolumen Deutschland

Industrie:

Dominanz von Großfirmen Zunehmend weniger KMU Forschung: Verschiedene Gruppen und Institute der FhG sowie verschiedener Universitäten

Einordnung nach Metallisierungsstrukturierung

Einordnung nach Metallisierungsstrukturierung

Direct Copper Bonding

Substrate für Power-Elektronik

Basis: gebrannte Substrate aus Al₂O₃, AlN, ... Metallisierung: Kupferfolien (einige (10 ... 100) μm

Vorteile: hohe Wärmeleitfähigkeit hohe Leiterzughöhen

Bei der Herstellung von Kupfer-Keramik-Verbindungen wird Kupfer mit Sauerstoff verbunden, wodurch der Schmelzpunkt von Kupferoxid (Cu2O) wesentlich unter den von reinem Kupfer sinkt. Das mit Kupfer beschichtete Kupferoxid wird als dünne Kupferfolie auf die Keramikoberfläche gelegt und in einer Schmelze erhitzt. Bei der Schmelze fügt sich die untere Seite der Kupferfolie, die aus Kupferoxid besteht, metallurgisch mit der Keramikoberfläche zusammen. In die Kupferoberfläche können durch Ätztechniken Strukturen ausgeätzt werden und so auf dem Keramiksubstrat Leiterbahnen gebildet werden.

Direct Copper Bonding

Quelle Bild: wikipedia

Vergleich DCB

Quelle: www.curamik.com

Einordnung nach Metallisierungsstrukturierung

AMB active metal brazing

Substrate für Power-Elektronik

Basis: gebrannte Substrate aus Si₃N₄, AlN, ... Metallisierung: Kupferfolien (einige (10 ... 100) μm)

Vorteile: hohe Wärmeleitfähigkeit

hohe Leiterzughöhen

Fügungen mit Hochtemperatur Metallloten
Metall-Keramik-Verbunde
→ Ausnutzung duktiler Eigenschaften, um unterschiedliche
Ausdehnungskoeffizienten zu überbrücken
Benetzung und Anbindung der Metalllote an keramische Oberflächen über
Aktivphase (Ti oder Zr) im Lot oder über eine separate Metallisierung (Mo-Mn-Dickschichtmetallisierung)

AMB

Tabelle 1 • Physikalische Eigenschaften von Al ₂ O ₃ , AlN und Si ₃ N ₄ im Vergleich [1–2]				
Kennwerte	Al ₂ O ₃	AIN	Si ₃ N ₄	
Wärmeleitfähigkeit (λ) / W/m·K	25 ±4	180 ±10	85 ±10	
Elektrischer Isolationswiderstand / $\Omega \cdot$ cm	>1013	>5·10 ¹²	>1012	
Durchschlagfestigkeit / kV · mm ⁻¹	≥20	>20	≥15	
Dielektrizitätszahl ($\epsilon_{ ho}$) (bei 1 MHz)	9,9	8,6	8,4-8,5	
Dielektrischer Verlust (tan δ) (bei 1 MHz)	0,3·10 ⁻³	0,5·10 ⁻³	1,0·10 ⁻³	
Biegebruchfestigkeit (σ_B) / MPa	>400	>300	>800	
Elastizitätsmodul (E) / GPa	400	310	336	
Wärmeausdehnungskoeffizient (α) / 10 ⁻⁶ · K ⁻¹				
RT 100 °C	6,9	3,6		
RT 1000 °C	8,3	5,6	3,0-3,5	
Thermoschockbeständigkeit	+	+++	+++	
Metallisierbarkeit	+++	+++	+	
Temperaturbeständigkeit	sehr hoch	sehr hoch	hoch	

Einordnung nach Metallisierungsstrukturierung

Dünnschichttechnik

Substrate für HD und Power-Elektronik

Basis: gebrannte Substrate aus Al2O3, AlN, LTCC, ... Metallisierung: Abgeschiedene Schichten bis 1 µm Dicke

Vorteile: hohe Wärmeleitfähigkeit hohe Leiterzughöhen

Besonderheiten:

Abfolge von Schichtabscheidung und Schichtstrukturierung

Quelle: www.cicor.com

Vakuumbeschichtungsverfahren

	Aufdampfen	Sputtern	Chem. Schicht- abscheidung (CVD)
Prozess- charakteristik	Kondensation thermisch verdampfter Teilchen	Kondensation zerstäubter Teilchen	Kondensation von Reaktions- produkten aus der Gasphase
Druckbereich (Pa)	<10-2	10 ⁻² 10	1 10 ³
Kondensations- rate (nm/min)	10 ² 10 ⁴ (konventionell) 10 ³ 10 ⁶ (Elektronenstrahl)	10 10 ² (konventionell) 10 ² 10 ³ (Hochraten- sputtern)	10 ² 10 ⁴

Quelle: Hanke "Hybridträger"

Auswahl von Substraten der Dünnschichttechnik und Eigenschaften

Substratmaterial	Temperatur- koeffizient (ppm/K)	Wärmeleit- fähigkeit (W/mK)	Relative Dielektrizitäts- konstante
Si	2,7-3,5	75-150	11,7
Al	22-24	238	
Cu	17	400	
Al2O3	6,5	27	9
AIN	4,1	175-200	8,5
BeO	8	250	6,7
SiC	3,7	270	40
हु हु Borosilikatglas	3,2	1,2	4,6
Dr. Lars Rel		C	Quelle: Reichl, FhG IZM

Auswahl von Materialien der Dünnschichttechnik und Eigenschaften

Metall	Spez. Widerstand (μΩcm)	Auftragsverfahren	Funktionsschicht	Löten/Bonden
Gold	2,35	Sputtern, Verdampfen, chem. Abscheiden, Galvanik	Leitschicht	Löten, Bonden
Kupfer	1,67	Sputtern, Verdampfen, chem. Abscheiden, Galvanik	Leitschicht	Löten
Aluminium	2,65	Sputtern, Verdampfen	Leitschicht	Ball und Wedgebonden
Nickel	6,9	Sputtern, Verdampfen, chem. Abscheiden, Galvanik	Leit- und Lötschicht, Diffusionssperre	Löten
Palladium	10,75	Sputtern, Verdampfen, Galvanik	Leitschicht, Diffusionssperre	Löten
Nickel/Chrom		Sputtern	Widerstandsschicht, Haftschicht, Trennschicht	
Tantal		Sputtern	Widerstandsschicht	

Bedampfen

Rezipient

Substrathalter mit Substraten Dampfstrom

Verdampfer

Sputtern

Rezipient

Substrathalter mit **Substraten**

Vakuumsystem

Galvanik (am Bsp. Kupfer)

Auswahl Elektrolytbäder

Beispiele:

Aluminiumelektrolyte <u>Antimonelektrolyte</u> Bleielektrolyte Bronzeelektrolyte **Cadmiumelektrolyte Cobaltelektrolyte Chromelektrolyte** Eisenelektrolyte **Goldelektrolyte** <u>Indiumelektrolyte</u> **Kupferelektrolyt**

Manganelektrolyte Messingelektrolyte Nickelelektrolyte Nickel-Eisen-Elektrolyte <u>Palladiumelektrolyte</u> Platinelektrolyte **Rheniumelektrolyte** Rhodiumelektrolyte <u>Rutheniumelektrolyte</u> <u>Silberelektrolyte</u> Wismutelektrolyte <u>Wolframelektrolyte</u> Zinkelektrolyte Zinnelektrolyte

Einordnung nach Metallisierungsstrukturierung

Dickschichttechnik

Substrate für Logik und Power

Basis: gebrannte Keramiken oder Polymerträger

Schichtstrukturierung durch Drucken pastöser Werkstoffe und Einbrennen oder Härten der gedruckten Strukturen

Vergleich: CERMET-DiS - Polymer DiS

	Polymerdickschicht	CERMET Dickschicht		HT Sensorik	
Prozess- temperatur	20 200 °C	500 1000 °C		1000 1600 °C	
Arbeits- temperatur	RT <100°C	RT 150 °C		400 900°C	
Prozess- zeiten	5 sec 30min	30 120 min		h d	
Matrix	Epoxydharz, Silikon	Glas, Glaskeramik		Keramik	
Bindungs- mechanismen	Polyaddition, Polykondensation	Sintern		Sintern	
Substrat- materialien	PVC, PET, FR4, Papier	Glas, Keramik, Stahl		Keramiken/Stahl	

Polymerdickschichttechnik (PTF)

- Transport und Logistik
- Diebstahlskontrolle
- Milchtüte
- Fußball-WM-Karten

- Aktives Label
- Datenlogger mit gedruckter Batterie und Thermosensoren

Quelle: Dr. M. Luniak; TUD IAVT

Einordnung nach Metallisierungsstrukturierung

Applikationen Multilayertechnik

- Sensoren
- Verdrahtungsträger mit hoher Wärmeleitfähigkeit und Integrationsdichte
- Hermetisch dichte Gehäuse

Quelle Bild: saw components

Applikationen Multilayertechnik

MPONENTS EPCOS YOUR DIRECT LINK TO EPCOS

Products & Technologies

LTCC-Module

Januar 2008

Weltweit kleinstes Frontend-Modul für WLAN und Bluetooth

Das weltweit kleinste All-in-one Frontend-Modul für Bluetooth- wie auch WLAN-Applikationen nach dem Standard 802.11 b/g/n hat EPCOS ietzt entwickelt. Bei einer Bauhöhe von 1,4 mm benötigt es nur noch eine Fläche von 4,5 x 3,2 mm² auf der Leiterplatte. Das Modul integriert den WLAN-Power-Amplifier, den WLAN-Bluetooth-Schalter, einen Receive-Balun sowie

das Bias-Netzwerk mit ESD-Schutz. Darüber hinaus ermöglicht das Coexistence-Filter den Simultanbetrieb von WLAN und Bluetooth mit allen Mobilfunkstandards.

Das LTCC-Modul mit der Bezeichnung D6101 stellt damit alle benötigten Funktionen zwischen WLAN- oder Bluetooth-HF-Transceiver und der Antenne zur Verfügung. Dadurch verkürzt sich die Entwicklungszeit von Endgeräten bei gleichzeitig minimiertem Platzbedarf.

Quelle: EPCOS

Einordnung nach Metallisierungsstrukturierung

Hochtemperaturkontaktierung

IKTS SOFC

Fügetechnologien für Sensorintegration

Fügung mit Glasloten

- Spannungsminimierte Keramik-Keramik-Verbunde mit angepassten Glasloten
- Metall-Keramik-Verbunde nur in Ausnahmefällen möglich
 - → Gute Anpassung der thermischen Dehnung von Metall und Keramik muss gegeben sein
 - → Eignung des Metalls f
 ür die Anbindung einer Glasphase muss gegeben sein (Vorbehandlung wie reinigen und beizen notwendig)
- Schützende Abdeckungen

Fügungen mit Metallloten

- Metall-Keramik-Verbunde
 - → Ausnutzung duktiler Eigenschaften, um unterschiedliche Ausdehnungskoeffizienten zu überbrücken
- Anbindung der Metalllote an keramische Oberflächen über Aktivphase (Ti oder Zr) im Lot oder über eine separate Metallisierung (Mo-Mn-Dickschichtmetallisierung)

Quelle: Rebenklau, Schilm, Kusnezoff; "Aufbau und Verbindungstechnik", DGM Fortbildungsseminar Hochtemperatursensorik, Gosslar Februar 2012 © Fraunhofer IKTS

Glaslote und Fügetechnologien für **Keramik-Metall-Verbunde**

Ausdehnungsverhalten Technischer Keramiken / 10⁻⁶ K⁻¹ 2 3 4 5 10 6 7 8 9 11 LTCC Perow-Si₃N₄ SIC AIN Al_2O_3 ZrO₂ skite - Reaktoren - LTCC-Metall - Dickschichttechnik - SOFC Permeations-- Sensoren - Sensoren - Thermoelektrik membran - Sensoren - Reaktoren - Heizer Niedrigschmelzend **Kristallisierend** Geringer TAK bei Fügung < 600°C Prozesstemp. < 1000°C temperaturstabil Hoher Ausdehnungskoeffzient

Anforderungen an Glaslote hängen stark von Anwendung, Prozesstechnologie und Materialeigenschaften ab

@ Rebenklau, Schilm, Kusnezoff: HT AVT; DGM Weiterbildungsseminar; Goslar; Feb. 2012₄₆ **Fraunhofer**

Modellfügungen für Keramik-HTCC-Verbund und Keramik-Metall-Verbund

- Kombination verschiedener hermetisch dichter Fügeverbunde
- Thermische Belastbarkeit
- Thermozyklisierbarkeit
- Funktionalität; Stabilität gegenüber Brenngasatmosphären

@ Rebenklau, Schilm, Kusnezoff: HT AVT; DGM Weiterbildungsseminar; Goslar; Feb. 2012, 47

Einordnung nach Metallisierungsstrukturierung

Weitere Applikationen für Dickschichtpasten

Plan für Heute

Keramische Technologien

Inhalt

Einordnung der Hybridtechnik

- Anwendungen, Anforderungen, ...
- Realisierungsvarianten keramischer Verdrahtungsträger

Materialien der Hybridtechnik

- Substrate / Pasten
- Druckformen

Prozess

- Siebdruck
- Thermische Prozesse

Technologie

- Einebenentechnik
- Mehrebenentechnik (cross over Technik, Komplementärdrucktechnik)

Multilayertechnik

Vergleich Substratmaterialien

Eigenschaft	Al ₂ O ₃	BeO	ESS	AIN	FR4
max. Prozesstemperatur in °C	≥ 1500	≥ 1800	550 – 650 (≥900)	≥1600	288
Therm. Ausdehnungskoeff. in 10 ^{–7} / K	75	85	90	34	10 - 25
Thermische Leitfähigkeit in W/mK	20	230	60 80	150 180	0,2 - 0,4
Biegefestigkeit in N/mm ²	320	170	-	300	
Oberflächenrauhigkeit in µm	0,5	≤0,5	-	1 - 5	
Spez. elektr. Widerstand in Ω/cm bei 20 °C	10 ¹⁴	≥10 ¹⁵	≥10 ¹⁴	10 ¹³	
Dielektrizitätszahl	9,5	7,0	6 – 8	10,0	3,6 - 4,8
Kostenfaktor ca.	1	50	0,5 - 2	20 40	

Vergleich Substratmaterialien

Hauptsächlich eingesetzt

Eigenschaft	Al ₂ O ₃	BeO	ESS	AIN	FR4
max. Prozesstemperatur in °C	≥ 1500	≥ 1800	550 – 650 (≥900)	≥1600	288
Therm. Ausdehnungskoeff. in 10 ⁻⁷ / K	75	85	90	34	10 - 25
Thermische Leitfähigkeit in W/mK	20	230	60 80	150 180	0,2 - 0,4
Biegefestigkeit in N/mm ²	320	170	-	300	
Oberflächenrauhigkeit in µm	0,5	≤0,5	-	1 - 5	
Spez. elektr. Widerstand in Ω/cm bei 20 °C	10 ¹⁴	≥10 ¹⁵	≥10 ¹⁴	10 ¹³	
Dielektrizitätszahl	9,5	7,0	6 – 8	10,0	3,6 - 4,8
Kostenfaktor ca.	1	50	0,5 - 2	20 40	

Dr. Lars Rebenklau; FhG IKTS 2018

Einfluss der Wämeleitfähigkeit

AIN	Al2O3	LTCC
180	20	3-4
W/mK	W/mK	W/mK

Materialien der Hybridtechnik

Pasten

Verarbeitungs- und Qualitätsmerkmale von Schichten / Funktionale Schichtqualität

- Flächenwiderstand
- Isolationswiderstand
- Durchschlagsspannungsfestigkeit
- Relative Dielektrizitätskonstante
- Kapazitiver Verlustfaktor
- Mechanische Haftfestigkeit
- thermischer Ausdehnungskoeffizient
- Wärmeleitfähigkeit
- Thermische Verlustleistungsdichte
- Thermischer Ausdehnungskoeffizient

Elektrische Eigenschaften

Mechanische Eigenschaften

Thermische Eigenschaften

Verarbeitungs- und Qualitätsmerkmale von Schichten / Verarbeitung der Paste im Prozess

- Pastenkompatibilität, Verdruckbarkeit
- Ablegierfestigkeit
- Lotbenetzbarkeit
- Drahtbondbarkeit
- Schichtdicke
- Strukturauflösung
- Schrumpfungsrate
- Thermischer Ausdehnungskoeffizient

Verdrahtungsdichte

Was sind Dickschichtpasten?

 Pseudoplastische, strukturviskose Dispersionen von anorganischen Pulvern in einem organischen Druckträger, die mittels Siebdruck auf einem Substrat abgeschieden werden können

Quelle: C. Kretzschmar

Arten von Dickschichtpasten

Leitpasten

- Lötbar
- Bondbar
-
- IsolationspastenWiderstandspasten
 - Temperaturstabil
 -

Dreiwalzwerk

Zusammensetzung von Dickschichtpasten

Wirkphase	Druckträger, Organische Binder	Lösungsmittel	Gläser			
Metall, Metalloxide, Glas, Keramik	Ethylzellulose, Acetate u.a.	Terpinöl u.a.	Borosilikatglas wismuthaltige Gläser u.a.			
	Prozentualer (Gewichtsanteil				
(30 70)%	(30 70)% (12 25)%					
Funktion / Einflüsse						
Bestimmt die elektrischen Eigenschaften der finalen Schicht	 rheologische Pasteneigen- schaften mech. Stabilität der getrockneten Paste 	rheologische Pasteneigen- schaften	Bestimmt die mech. Stabilität und Haftfestigkeit der gebrannten Schicht			

Prinzip Pastenherstellung

Pastenstrukturierung

Haftmechanismen

"glas bonded system"

Glas diffundiert in das Metall-Keramikinterface

 \rightarrow Mechanische Haftmechanismen

"fritless conductor"

Mischformen

Zugabe von Oxiden; z.B. CuO, CdO, NiO; Reaktion z.B. zu CuAlO₂

 \rightarrow Chemische Haftmechanismen

Bestandteile des Glases

Netzwerkbildner: SiO₂, B_2O_3 , P_2O_5 ...

Grundgerüst des Glases in Form eines unregelmäßigen, räumlichen **Netzwerkes**

→ Gewährleistung der strukturellen Integrität

Netzwerkwandler: Na₂O, CaO, MgO, Y₂O₃...

Brechen das Netzwerk auf und bilden Trennstellen

- → Wandlung der Glasstruktur
- \rightarrow Beeinflussung der Glaseigenschaften

Zwischenoxide: Al_2O_3 , PbO, Bi_2O_3 ...

Wirken in Abhängigkeit von Anteil und Glaszusammensetzung netzwerkbildend & wandelnd

ightarrow Stabilisierung der Glasstruktur

Materialien der Hybridtechnik

Leitpasten

Perkolationsschwelle (Leitpasten)

Vergleich Leitpasten

Pasten- material	Widerstand in mΩ/ s q	Adhäsion in kg/mm ²	Löten	Bonden	Preis	Bemerkung
Ag	1 – 10	0,7 – 0,9	Х		+	Ag- Migration
AgPd	10 – 30	0,9 – 1,1	Х	±	±	Standard- paste
AgPt	3 – 20	0,9 – 1,1	Х	+	-	
Au	1 – 6	0,9 – 1,1	Х	++	-	Bondpads, MIL, HF
AuPd	20 – 100	0,6 - 0,8	Х	++	-	MIL
AuPt	20 – 100	0,7 – 0,9	Х	+		gut lötbar
Cu	1 – 4	0,5 – 0,7	Х	±	++	

Löseraten

Löserate von Metalldrähten

Source: Hanke "Hybridträger"; Prudenziati (Sn60Pb40) © Fraunhofer IKTS

Ablegierfestigkeiten von Dickschichtpasten

Ablegierfestigkeit

Weichgelötete Goldpaste

Beispiel Silbermigration

- Potentialunterschied 5 Volt
- Wassertropfen wird per Hand aufgesetzt

Pastenlegierungen

Typische AgPt Paste

Hier weiter

Materialien der Hybridtechnik

Widerstandspasten

Widerstands- und Heizpasten

- Bi₂Ru₂O₇, Pb₂Ru₂O_{6,5},
 RuO₂, Ag/Pd/PdO
- Glas
- TKR-Modifier
- Additive

- Festwiderstände
 - Leistungswiderstände
 - Potentiometer
 - Heizer
 - Temperatursensoren
 - Drucksensoren

Ŷ

- Definierter Flächenwiderstand
- Kleiner oder großer
 Temperaturkoeffizient
- Hohe Stabilität (150°C, 85°C 85%RH)
- Elektrische Belastbarkeit
- Dehnungsempfindlichkiet

Der Begriff "Flächenwiderstand"

Widerstandspasten Kennwerte Datenblatt Heraeus R8900 Serie

Heraeus

Resistors R 8900 Series

Air Fired Resistor System

Description

The Heraeus resistor R 8900 Series resistor materials are part of complete thick film materials system. Materials in this system are designed for production of high reliability, commercial and industrial hybrid microcircuit and resistor networks. The Series is entirely free of cadmium, nickel and phthalate, and it shows additionally the following key advantages:

- Excellent noise and STOL values
- Compatible with C 2000 Series (Ni and Cd-free)
- R 8900 Series offers a range of 1 Ω / □ 1 MΩ / □.

R 8900 Series ^{2, 3}	R 8911	R 8921	R 8931	R 8935 L	R 8935 HN ¹⁰	R 8941 N ¹⁰	R 8951 N ¹⁰	R 8961 N ¹⁰
Resistivity ⁴ [Ω/□]	10 ± 10%	100 ±10%	1 k ± 10%	5 k ± 10%	5 k ± 10%	$10 \text{ k} \pm 10\%$	100 k ±10%	1 M ±10%
Temperature coefficient of resistance ⁴ TCR [ppm/K]	± 100	± 100	± 100	± 100	± 100	± 100	± 100	± 100
Voltage coefficient of resistance ⁵ VCR [ppm/V/mm]	-	-	-	-	-	-50	-	-
Short term overload voltage ⁶ [V/mm]	9	28	87	155	180	238	497	524
Standard working voltage ⁷ [V/mm]	3.6	11	35	62	72	95	199	209
Maximum rated power dissipation ⁸ [mW/mm ²]	1300	1280	1220	770	1040	910	395	44
Quan tech noise ⁹ [dB]	-	-32	-21	-10	-13	-10	-3	-

Typical Fired Resistor Properties 1)

Schichterzeugung

Inhalt

Einordnung der Hybridtechnik

Anwendungen, Anforderungen, ...

Realisierungsvarianten keramischer Verdrahtungsträger

Materialien der Hybridtechnik

- Substrate / Pasten
- Druckformen

Prozess

- Siebdruck
- Thermische Prozesse

Technologie

- Einebenentechnik
- Mehrebenentechnik (cross over Technik, Komplementärdrucktechnik)

Multilayertechnik

Schichtherstellung

Paste	Substrat
Schichtauftrag	Strukturierter Schichtauftrag mittels Siebdruck
Temperaturprozess	
Trocknen	Verdampfen der für den Siebdruck erforderlichen Lösungsmittel
Brennprozess	
Ausbrennen	Entfernung der für die Schichtstabilität nach dem Trocknen und für die Einstellung der Fließeigenschaften der Paste beim Siebdruck notwendigen organischen Binder
Einbrennen	Ausbildung der inneren Stabilität der Schicht sowie der Haftfestigkeit zum Trägersubstrat und Ausbildung der funktionellen Eigenschaften
Gebrannte Schicht	

Strukturierter Schichtauftrag

IKTS

Siebdruck

Einordnung:

Siebdruck hat hohe Bedeutung im grafische Gewerbe in der Elektroniktechnologie sowie in der Photovoltaik.

Ziel:

Abbildung der zu realisierenden Struktur durch das Durchdrucken einer Druckform mit Paste

Alternativ (im Bereich der Dickschichthybridtechnik):

- Dünnschichttechnik (siehe Kapitel: "Dünnschicht" sowie Script AVT I)
- Fotostrukturierung von Dickschichtpasten "Fodel[®]" (siehe Kapitel: "Siebdruck")
- Druckformlose Verfahren / Direktschreibverfahren von Dickschichtpasten:
- Inklet Druck
- Aerosoldruck

ικτς

Einsatz alternativer Strukturierungsverfahren

- InkJet Druck
- Aerosoldruck

(Vermutete) Vorteile:

- exaktere Geometrie (geringere Toleranzen)
- genauere und geringere Strukturauflösung (derzeit nicht unter 100 µm im SD in Serie)
- steuerbare Schichtdicken

Vergleich Drucktechniken

	Siebdruck (Hotmelt)	Tampondruck	Ink-Jet-Druck	Aerosol Druck
Minimale Leiterbahnbreite	ca. 60 µm	ca. 40 µm	ca. 40 µm	ca. 10 - 15 μm
Maximale Leiterbahnbreite	flächig	flächig	bis zu 500 µm	bis 5 mm
Bahnhöhe	5-20 (40) μm	5-100 μm	ca. 0,1 µm	0,25 μm – 10 μm (durch Mehrfachdruck)
Viskosität Tinten/Pasten	>10.000 mPa·s	>10.000 mPa·s	5 – 15 mPa·s	0,7 – 1.000 mPa·s
3D Direkt Schreiben	planar/ tubular	planar/ sphärisch	planar	möglich (Höhen- unterschiede bis 5 mm)

Quelle: SF2020; IKTS Partsch, Fritsch, Mosch

Ink-Jet Anlage

Printing principle

Printing platform

DoD300 from Schmid Tec.

Specifications

Brand	Schmid
Home	Germany
Туре	DoD300
Ink-Jet Principle	Piezo DoD
Print head	Dimatix, Konica- Minolta, more
Number of nozzles	up 512 scale able
Nozzle Ø µm	variable (< 15 µm possible)
Drops pL	e.g. 430
η ink mPas	615
Particles µm	< 15
Positioning	x-y-(z)
Printing area mm ²	300*300
Accuracy µm	± 10
Printing speed mm/s	< 1000
Dimensions L·B mm ²	900*1500
Remarks	Industrial inline compatible printer

Quelle: Fritsch IKTS

Direktstrukturierung - InkJet Druck

("Tintendrucker am PC")

Quelle: Fritsch IKTS

Direktstrukturierung – Aerosoldruck

("Mikro Spray Dose")

Quelle: Mosch IKTS

Direktstrukturierung – Aerosoldruck

("Mikro Spray Dose")

Quelle: Optomec, IDTec Dresden 2008

Druckformen

Siebherstellung: 1. Rahmen

Bild: Gröner Siebdruck

Bild: Böttcher Siebdruck

Siebherstellung: 2. Sieb einkleben

Siebbespannung

Gewebearten

Leinenbindung (Glatte Bindung) Wechsel 1-1

Köperbindung Wechsel 2-2

5-Schaft-Köperbindung (Atlasbindung) Wechsel 4-1

Quelle: Dr. L. Luniak, TUD/IAVT

Siebbelastung

V Screen Gewebe

- 30 µm Fäden aus V-Screen (VECRY)
- Edelstahl (SUS304)
- Polyester (PET)
- Quelle Bilder: <u>www.koenen.de</u>

Siebherstellung: 3. Emulsion beschichten

Das erfolgt mit Folie!! Ich hatte bloß kein anderes Bild!!

Bild: Wikipedia

Vergleich: direkte vs. indirekte Siebbeschichtung

Prinzipdarstellung: nicht Maßstäblich!

97 Fraunhofer

Siebherstellung: 4. Emulsion härten

Bild: memmert

Siebherstellung: 6. Entwickeln

Bild: walterlemmen.de

Siebherstellung: 7. Randbeschichtung/Trocknen

Bild: Könen

Siebgewebe (ausgewählte Siebparameter)

© Fraunhofer IKTS

Siebparameter

• Drahtdurchmesser d (µm)	16 70
 Maschenweite w (μm) 	20 300
 Meshzahl m (Maschen pro Zoll) 	70 600
• Öffnungsverhältnis ö (%)	25 70
• Gewebedicke D _G (μm)	30 150
 Theoretisches Farbvolumen V_{th} (cm³/m²) 	20 100

$$w = \frac{25,4mm}{m} - d$$

$$\ddot{D}_{G} = (2 \dots 2,5)d$$

$$(Kalandriert - 20\%)$$

$$\ddot{O} = \frac{W^{2}}{(w+d)^{2}}$$

$$V_{th} = \ddot{O} * (D_{G} + E_{D})$$

kommerzielle Siebgewebe

Ge	webe-	Maschen- weite	Draht- stärke	Maschen- anzahl	offene Siebfläche	Gewebe- dicke	theoret. Farbauftrag	Gewebe- dicke	theoret. Farbauftrag
beze	eichnung	w in µm	d in µm	25.4 mm	A, in %	D in µm	V _{th} cm ³ /m ²	D, in µm	V _{th} cm ³ /m ²
SD+	32/18	32	18	500	41 %	36 ± 2	15	32 ± 2	13
SD+	40/23	40	23	400	40 %	46 ± 2	19	40 ± 2	16
SD+	40/25	40	25	400	38 %	50 ± 2	19	42 ± 2	16
SD+	45/18	45	18	400	51 %	36 ± 2	18	31 ± 2	16
SD+	56/16	56	16	350	60 %	33 ± 2	20	27 ± 2	16
SD+	50/28	50	28	325	41 %	56 ± 2	23	49 ± 2	20
SD+	50/30	50	30	325	39 %	60 ± 2	23	50 ± 2	20
SD+	53/24	53	24	325	47 %	48 ± 2	23	38 ± 2	18
SD+	56/32	56	32	300	40 %	64 ± 2	26	52 ± 2	21
SD+	63/36	63	36	250	40 %	72 ± 2	29	61 ± 2	25
SD+	65/20	65	20	300	58 %	40 ± 2	23	30 ± 2	18
SD+	67/25	67	25	280	53 %	50 ± 2	27	40 ± 2	21
SD+	71/30	71	30	250	49 %	60 ± 2	30	48 ± 2	24
SD+	75/36	75	36	230	46 %	72 ± 2	33	59 ± 2	27
SD+	80/30	80	30	230	53 %	60 ± 2	32	49 ± 2	26
SD+	85/25	85	25	230	60 %	50 ± 2	30	37 ± 2	22
SD+	90/36	90	36	200	51 %	72 ± 2	37	57 ± 2	29
SD+	90/40	90	40	200	48 %	80 ± 2	38	65 ± 2	31
SD+	98/30	98	30	200	59 %	60 ± 2	35	47 ± 2	28
SD+	265/50	265	50	80	71 %	100 ± 2	71	60 ± 2	42

Einsatz von Druckformen

В

Einsatz von Druckformen

Siebart		Technologie	Bemerkung	Standzeit
Gewebesieb	direkt	Emulsionsauftrag (fotoempfindlich)	unkontrollierte Emulsionsdicke, Auflösung maschenquerender Strukturen mangelhaft	sehr hohe Standzeit (bis 100.000 Drucke)
	indirekt	fotoempfindlicher Film	kontrollierte Emulsionsfilmdicke, Auflösung maschenquerender Strukturen hervorragend	schneller Herstellungsprozess, mittlere Standzeit
	direkt/ indirekt	Fotoempfindlicher Film (Druckseite) und fotoempfindliche Emulsion	kontrollierte Emulsionsfilmdicke, Auflösung maschenquerender Strukturen gut	gute Detailtreue, hohe Standzeit
Metallfolien Kontaktdruck	direkt	Metallfolie, Lochstruktur von oben und Druckstruktur von Druckseite geätzt	sehr gute Detailtreue und Kantenschärfe bei an Druckstruktur angepasste Lochstruktur	extrem hohe Standzeit (!! bei sehr sorgfältigem Handling !!, Preis)
		Laserstrukturiert, Kuststoffauftrag (außerhalb der Drucköffnungen) zur Abdichtung beim Druck	bei angepasster Lochstruktur <50 μm Linienbreite/-abstände möglich	Abnutzung der Kunsttoffschicht
	indirekt	strukturierte Metallfolie (geätzt, laserstrukturiert, gestanzt)	auf Gewebesieb (unbeschichtet) geklebt oder gelötet	Gefahr der Abscherung der Folie
Metallfolien Absprungdruck	indirekt	strukturierte Metallfolie (geätzt, gebohrt, laserstrukturiert, gestanzt)	Rand der strukturierten Folie auf gespanntes Gewebesieb geklebt, Gewebe über Druckstruktur entfernt	Gefahr der Abscherung

Quelle: Jillek, Keller "Handbuch der Leiterplattentechnik"

Siebdruck

Prinzip Siebdruck

- 1 Siebrahmen
- 2 Schablonenträger (Siebgewebe)
- 3 Epoxydharzkleber
- 4 Siebdruckschablone (Fotopolymer) 5 Druckbild (Struktur)
- 6 Substrat
- 7 Drucktisch
- 8 Rakel
- 9 Dickschichtpaste
- 10 Siebschleppe
- 11 Druckstruktur (Druckstrukturbild)
- A Absprung
- F Rakelanpresskraft
- v Rakelgeschwindigkeit

Begriffe: (vgl. auch DIN 16 610)

Quelle: Hanke "Hybridträger"
Einflussfaktoren in der Dickschichttechnik

Quelle: Jillek, Keller: Handbuch der Leiterplattentechnik Bd. 4

Wesentliche Einflussfaktoren während des Siebdrucks

- Absprung
- Rakelgeschwindigkeit
- Rakeldruck
- Verfahrlänge
- Siebvorspannung, Siebgröße
- Druckbildgröße
- Pastentheologie
- Umweltbedingungen (Temperatur, Luftfeuchtigkeit, …)

—

Prinzipieller Aufbau eines Siebdruckers

3. Phase

Auslösen der Paste !!

```
Prinzipbild: Nicht maßstäblich!
```


4. Phase

Prinzipbild: Nicht maßstäblich!

Einfluss der Siebparameter auf das Druckbild

Quelle: John Oleksyn DuPont Bristol UK

Einflussgrößen auf Druckprozess (Zusammenfassung)

	I. Phase - Strömung der Paste vor der Rakel	II. Phase - Strömung der Paste durch die Druckformöffnung	III Phase - Entformung der Paste	IV Phase - Ausgleich der Paste auf Substrat
Pasten- einflüsse	 Viskosität Pastenvolumen 	 Viskosität Thixotropie Teilchengröße Fließgrenze 	 Viskoelastizität Viskosität Adhäsionskräfte 	 Viskosität Thixotropie Oberflächen- spannung Fließgrenze Teilchenform
Prozess- einflüsse	 Rakelwinkel Druck- geschwindigkeit Rakelkraft 	 Druck- geschwindigkeit Rakelkraft 	 Abhebe- geschwindigkeit 	
Druckform- einflüsse	• Eigenschaften der Druckformoberfläche	 Geometrie der Druckstruktur Druckformdicke 	 Geometrie der Druckstruktur Wandungsfläche Druckformabmessung Siebspannung 	• Schichtdicke
Druckstruktur- einflüsse		SiebgewebeDruckstruktur	 Grundfläche auf dem Bedruckgut 	 Strukturbreiten, - abstände

Optimierungskriterium und Wechselwirkung

Absprung	
 mindestens notwendiger Absprung für die Entformung maximal zulässiger Absprung der Gewebedehnung maximal zulässiger Absprung der Druckstrukturdehnung maximal zulässiger Absprung zur Vermeidung des Unterdruckens in Rakelrichtung 	 Druckbildgröße, Rakelweg, Siebvorspannung, Flächenbelegung des Druckbildes, Siebgröße Siebgewebeart, Siebgröße, Rakelbreite, Siebvordehnung Siebgröße, Druckstrukturgröße, Rakelbreite Siebgröße, Emulsionsdicke, Rakelkraft, Pastenvolumen vor der Rakel

Siebdruck Bsp. EKRA

Brennprofil

120 Fraunhofer

© Fraunhofer IKTS

Thermische Prozesse

ckenprozess - Verdampfen der Lö - Adsorption der Druc - Polymerzersetzung u - Glaserweichung und - Sinter- und Legierun - Ausbildung des che - Oxidations- und Rec - Kristallisation von C	ungsmittel trägerpolymere auf den Feststoffteilchen id -entfernung durch Oxidation und / oder Pyrolyse Ausbildung der mechanischen Haftmechanismen gsprozesse ischen Haftmechanismus iktionsreaktionen äsern
- Adsorption der Druc sbrennprozess - Polymerzersetzung u - Glaserweichung und - Sinter- und Legierun - Ausbildung des che - Oxidations- und Red - Kristallisation von C	trägerpolymere auf den Feststofffeilchen id -entfernung durch Oxidation und / oder Pyrolyse Ausbildung der mechanischen Haftmechanismen gsprozesse ischen Haftmechanismus iktionsreaktionen äsern
prennprozess - Polymerzersetzung (- Glaserweichung und - Sinter- und Legierun - Ausbildung des che - Oxidations- und Rec - Kristallisation von C	Ausbildung der mechanischen Haftmechanismen jsprozesse ischen Haftmechanismus iktionsreaktionen äsern
orennprozess - Glaserweichung und - Sinter- und Legierun - Ausbildung des che - Oxidations- und Red - Kristallisation von C	Ausbildung der mechanischen Haftmechanismen jsprozesse ischen Haftmechanismus iktionsreaktionen äsern
- Kristallisation von C	äsern
tenart Trocknungsbedingung	
in the international second seco	n weitere Temperaturprozesse
RMET-Pasten Trocknen t-, Widerstands-, 120 °C - 150 °C ationspasten)	Ausbrennen Einbrennen 200 °C - 500 °C > 500 °C typisch 850 °C, 900 °C, 925 °C im allgemeinen wird das Ausbrennen und Einbrennen als Brennprozess in einem Tunnelofen durchlaufend.
deckpasten Trocknen 120°C - 150 °C	Ausbrennen 200 °C - 500 °CEinbrennen bzw. Aufschmelzen typisch 450 °C, 500°C
pasten Trocknen	Aufschmelzen 200 °C - 280 °C Aushärten 150 °C - 400 °C
120°C - 150 °C	200 °C - 500 °C typisch 450 °C, 500 Aufschmelzen 200 °C - 280 °C Aushärten 150 °C - 400 °C

Schematischer Aufbau eines Dickschichtofens

Einfluss ungenügender Gasmenge beim Einbrennen

Leiterbahnen	Widerstände	Dielektrika
hoher Widerstand	kleiner Widerstand	Blasenbildung
schlechte Oberflächenrauhigkeit	großer Widerstand	hohe Porösität
schlechte Lötbarkeit	schlechte Oberfläche	hohes tan δ
geringe Haftung		

Einordnung Dickschichtverdrahtungsträger

Technologieablauf beim Mehrebenenaufbau

Leitstrukturdruck / Trocknen			
Drannan	050	•	
Brennen	850	Ĵ	
Isolationsdruck / Trockr	nen		
	050	~ ^	
Brennen	850	°C	
loolotionodruok / Trookr			
ISUIALIOIISUIUCK / ITUCKI			
Brennen	850	°C	
Leitstrukturdruck / Trocknen			
	knen		
Brennen		°C	
Brennen	knen 850	°C	
Brennen	850	°C	
Brennen Widerstandspastendruck	knen 850 / Trockr	°C	
Brennen Widerstandspastendruck Brennen	knen 850 / Trockr 850	°C nen °C	
Brennen Widerstandspastendruck Brennen	knen 850 / Trockr 850	°C nen °C	
Brennen Widerstandspastendruck Brennen Abdeckpastendruck / Tro	knen 850 / Trockr 850 cknen	°C nen °C	
Brennen Brennen Brennen Brennen Abdeckpastendruck / Tro	knen 850 / Trockr 850 knen	°C nen °C	

125 Fraunhofer

Technologietreiber

Quelle: 1998 National Electronics Manufacturing Technology Roadmaps

Technologietreiber "Performance" – Moore's Law

"Note: Vertical scale of chart not proportional to actual Transistor count.

Technologietreiber "Performance" – > Roadmap

Jahr	2004	2005	2006	2007	2008	2009
max. Verlustleistung [W]						
Low-cost	2,7	2,8	3,0	3,0	3,0	3,0
High-performance	160	170	180	190	200	200
max. Anschlusszahl						
Low-cost	122-500	134-550	144-600	160-660	180-720	180-800
High-performance	3000	3400	3800	4000	4400	4600
Chip-board-Freq. [MHz]						
Low-cost	100	100	100	100	100	100
High-performance	2500	3125	3906	4883	6103	7629
max. JuncTemp. [°C]						
Low-cost	90	85	85	85	85	85
High-performance	90	85	85	85	85	85

TCM Modul 1

Quelle: www.ibm.com

TCM Modul 2

Standardprozess LTCC

Technologieablauf LTCC

M. Luniak, TUD IAVT

Marktverteilung LTCC

Quelle: BPA Studie 2006

Technologieablauf LTCC

M. Luniak, TUD IAVT

Strukturierung von LTCC Tapes

Via Stanzen

Aufbau eines Stanzwerkzeuges: (schematisch)

- Stanzstempel
- Absteiferbuchse
- LTCC-Grünfolie
- Schnittbuchse

Stanzwerkzeug in der Praxis:

- Präzisions-Stanzwerkzeug mit Mehrfachstempelanordnung
- Substrathalterung (Saugrahmen)
- LTCC-Substrat

Automatische Stanzanlage:

- Entnahme der Folien aus Kassette
- Stanzen
- Inspektion
- Ablage in Einzeltrays

Technologieablauf LTCC

M. Luniak, TUD IAVT

Prinzip Siebdruck

1 Siebrahmen

- 2 Schablonenträger (Siebgewebe)
- 3 Epoxydharzkleber
- 4 Siebdruckschablone (Fotopolymer) 5 Druckbild (Struktur)
- 6 Substrat
- 7 Drucktisch
- 8 Rakel
- 9 Dickschichtpaste
- 10 Siebschleppe
- 11 Druckstruktur (Druckstrukturbild)
- A Absprung
- F Rakelanpresskraft
- v Rakelgeschwindigkeit

Begriffe: (vgl. auch DIN 16 610)

Quelle: Hanke "Hybridträger"

Technologieablauf LTCC

M. Luniak, TUD IAVT

Laminationsverfahren

Materialverhalten im ungesinterten Zustand

Kriechverlauf 8lagige Proben

Quelle: DA Fritzsch

Lamination

Laminationsparameter zu hoch

Laminationsparameter optimiert

Technologieablauf LTCC

M. Luniak, TUD IAVT

Einbrennprofil für 850 °C Temperaturprofil (Standard DS)

Brennprofil LTCC z.B. DP 951

Recommended Firing Profile

Quelle: Datenblatt DP 951

Schematischer Aufbau eines Dickschichtofens

Ausbrand

Schwindungsuntersuchungen

Sinterschrumpf kommerzieller LTCC Materialien

Konzepte zur Unterdrückung des Sinterschrumpfes

	UCS	TOS	PAS	PLAS	SCS
	Sintern	starres Substrat	poröser Setter Opferlage Opferlage	Haltefolie Haltefolie Sintern, Opferlagen entfernen	Sintern
1	10 10 07	starres Substrat			
laterale Schrumpfung	12 - 18 %	gering, nimmt mit höherer Dicke zu	0,0 - 0,3 %	0,2 - 0,4 % (Kan- tenbereich)	0,2 - 0,4 %
Toleranzen	0,15 - 0,4 $\%$	dickenabhängig	0,05 - 0,1 $\%$	0,10%	0,04%
max. Lagenzahl	nahezu unbegrenzt	begrenzt	nahezu unbegrenzt	begrenzt	begrenzt
Folgeprozesse	nach Sintern so- fort bereit für Fol- geprozesse	nach Sintern so- fort bereit für Fol- geprozesse	Nachbearbeitung nach Sintern notwendig	Nachbearbeitung nach Sintern notwendig	nach Sintern so- fort bereit für Fol- geprozesse
Verfügbarkeit	Vielzahl von Materialien ver- fügbar	eingeschränkte Materialauswahl	wenige Folien und Pasten verfügbar	wenige Folien und Pasten verfügbar	Einführung erster Foliensysteme, Pasten einge- schränkt
Firmen	alle	Heraeus ESL	DuPont Heraeus (CT800)	DuPont	Heraeus (HL2000, HL800) Bosch

Quelle: Rebenklau, Wolter, Hildebrandt "Zero-Shrink-Studie" TUD 2007

Vielen Dank für die Aufmerksamkeit!

