

Keramische Hybridtechnik/Multilayertechnik SS 2017

Dr. Lars Rebenklau, Systemintegration und AVT

© Fraunhofer IKTS

Inhalt

Einordnung der Hybridtechnik

- Anwendungen, Anforderungen, ...
- Realisierungsvarianten keramischer Verdrahtungsträger

Materialien der Hybridtechnik

- Substrate / Pasten
- Druckformen

Prozess

- Siebdruck
- Thermische Prozesse

Technologie

- Einebenentechnik
- Mehrebenentechnik (cross over Technik, Komplementärdrucktechnik)

Multilayertechnik

Literaturempfehlungen zur Dickschichttechnik

Reichl: Hybridintegration

Hüthig Verlag Heidelberg; 1988

Hanke: Hybridträger

Verlag Technik Berlin; 1994

Jillek, Keller: Handbuch der Leiterplattentechnik Bd. 4

Leuze Verlag; 2004

Schramm: Einführung in die Rheologie und Rheometrie

Gebr. Haake GmbH

Tagungsbände: IMAPS; ECTC; ...

Einordnung der Hybridtechnik

Was ist Dickschichttechnik ?

"keramische Leiterplatte"

Keramiksubstrat bedruckt mit Pasten eines Systems

Pasten eines Herstellers die untereinander kompatibel sind und die zusammen verarbeitet werden.

Bsp.: Praktikumsschaltkreis TUD/IAVT

> Wesentliche Vorteile gegenüber Leiterplatte:

- Thermische Leitfähigkeit
- Angepasster TCR (Silizium Keramik)
- Temperaturstabil
- Massentaugliche Fertigung möglich

Technologievergleich

Vergleichsgröße	SMT	Dickschicht	Dünnschicht	Monolith
Miniaturisierungsgrad	-	+-	+	++
Einsatzmöglichkeiten	+	++	++	+-
Max. Verlustleistung	-	++	+-	-
Entwicklungszeit	++	+-	+	
Zuverlässigkeit	-	+	+	++
Fertigungskosten, kl. Stückzahlen	++	+-	+	
Fertigungskosten, mittl. Stückzahlen	+	+	+-	+-
Fertigungskosten, gr. Stückzahlen	-	+	-	++
Invest und Betriebskosten	++	+	-	

++, sehr gut,, -- sehr schlecht, sehr ungünstig

Quelle: Reichl, FhG IZM

Einordnung von Elektronikprodukten

⁷ Fraunhofer

Technologietreiber: "Einsatzgebiet und Volumen"

Quelle: Google; Suchworte: SHM+ Airplane

Technologietreiber: "Einsatzgebiet und Volumen"

Structural Health Monitoring (SHM)

SHM as aspect of Airbus 'intelligent' airframe

Quelle: Google; Suchworte: SHM+ Airplane

Technologietreiber: "Einsatzbedingungen" -> Bsp.

Automobilelektronik

Steuergeräte für Kfz

Einsatzgebiet Kfz-Elektronik

Einsatz Dickschichthybride

Mit freundlicher Genehmigung: Hella KG

Einordnung nach Metallisierungsstrukturierung

Inhalt

Einordnung der Hybridtechnik

- Anwendungen, Anforderungen, ...
- Realisierungsvarianten keramischer Verdrahtungsträger

Materialien der Hybridtechnik

- Substrate / Pasten
- Druckformen

Prozess

- Siebdruck
- Thermische Prozesse

Technologie

- Einebenentechnik
- Mehrebenentechnik (cross over Technik, Komplementärdrucktechnik)

Multilayertechnik

Materialien der Hybridtechnik

Substrate/Pasten

Vergleich Substratmaterialien

Eigenschaft	Al ₂ O ₃	BeO	ESS	AIN	FR4	Si3N4
max. Prozesstemperatur in °C	≥ 1500	≥ 1800	550 – 650 (≥900)	≥1600	288	
Therm. Ausdehnungskoeff. in 10 ^{–7} / K	75	85	90	34	10 - 25	35
Thermische Leitfähigkeit in W/mK	20	230	60 80	150 180	0,2 - 0,4	85
Biegefestigkeit in N/mm²	320	170	-	300		800
Oberflächenrauhigkeit in µm	0,5	≤0,5	-	1 - 5		
Spez. elektr. Widerstand in Ω/cm bei 20 °C	10 ¹⁴	≥10 ¹⁵	≥10 ¹⁴	10 ¹³		10 ¹²
Dielektrizitätszahl	9,5	7,0	6 – 8	10,0	3,6 - 4,8	8,4
Kostenfaktor ca.	1	50	0,5 - 2	20 40		??

Einfluss der Wämeleitfähigkeit

AIN	A2O3	LTCC
180 W//mK	20 W//mK	3-4
VV/IIIN	VV/IIIN	VV/IIIN

Verarbeitungs- und Qualitätsmerkmale von Schichten / Funktionale Schichtqualität

- Flächenwiderstand
- Isolationswiderstand
- Durchschlagsspannungsfestigkeit
- Relative Dielektrizitätskonstante
- Kapazitiver Verlustfaktor
- Mechanische Haftfestigkeit
- thermischer Ausdehnungskoeffizient
- Wärmeleitfähigkeit
- Thermische Verlustleistungsdichte
- Thermischer Ausdehnungskoeffizient

Elektrische Eigenschaften

Mechanische Eigenschaften

Thermische Eigenschaften

Verarbeitungs- und Qualitätsmerkmale von Schichten / Verarbeitung der Paste im Prozess

- Pastenkompatibilität, Verdruckbarkeit
- Ablegierfestigkeit
- Lotbenetzbarkeit
- Drahtbondbarkeit
- Schichtdicke
- Strukturauflösung
- Schrumpfungsrate
- Thermischer Ausdehnungskoeffizient

Verdrahtungsdichte

Was sind Dickschichtpasten?

 Pseudoplastische, strukturviskose Dispersionen von anorganischen Pulvern in einem organischen Druckträger, die mittels Siebdruck auf einem Substrat abgeschieden werden können

Quelle: C. Kretzschmar

Arten von Dickschichtpasten

Leitpasten

- Lötbar
- Bondbar
-
- IsolationspastenWiderstandspasten
 - Temperaturstabil
 -

Dreiwalzwerk

Zusammensetzung von Dickschichtpasten

Wirkphase	Druckträger, Lösungsmittel Organische Binder		Gläser			
Metall, Metalloxide, Glas, Keramik	Ethylzellulose, Acetate u.a.	Terpinöl u.a.	Borosilikatglas wismuthaltige Gläser u.a.			
	Prozentualer Gewichtsanteil					
(30 70)%	(12	(10 20)%				
Funktion / Einflüsse						
elektrische Schicht- eigenschaften	 rheologische Pasteneigen- schaften mech. Stabilität der getrockneten 	rheologische Pasteneigen- schaften	mech. Stabilität und Haftfestigkeit der Schicht			
	Paste					

Prinzip Pastenherstellung

Pastenstrukturierung

Haftmechanismen

"glas bonded system"

Glas diffundiert in das Metall-Keramikinterface

 \rightarrow Mechanische Haftmechanismen

"fritless conductor"

Mischformen

Zugabe von Oxiden; z.B. CuO, CdO, NiO; Reaktion z.B. zu CuAlO₂

 \rightarrow Chemische Haftmechanismen

Bestandteile des Glases

Netzwerkbildner: SiO_2 , B_2O_3 , P_2O_5 ...

Grundgerüst des Glases in Form eines unregelmäßigen, räumlichen **Netzwerkes**

→ Gewährleistung der strukturellen Integrität

Netzwerkwandler: Na₂O, CaO, MgO, Y₂O₃...

Brechen das Netzwerk auf und bilden Trennstellen

- → Wandlung der Glasstruktur
- \rightarrow Beeinflussung der Glaseigenschaften

Zwischenoxide: Al_2O_3 , PbO, Bi_2O_3 ...

Wirken in Abhängigkeit von Anteil und Glaszusammensetzung netzwerkbildend & wandelnd

→ Stabilisierung der Glasstruktur

Materialien der Hybridtechnik

Leitpasten

Perkolationsschwelle (Leitpasten)

Vergleich Leitpasten

Pasten- material	Widerstan d in mΩ/•	Adhäsion in kg/mm ²	Löten	Bonden	Preis	Bemerkung
Ag	1 – 10	0,7 – 0,9	Х		+	Ag-Migration
AgPd	10 – 30	0,9 – 1,1	Х	±	±	Standardpaste
AgPt	3 – 20	0,9 – 1,1	Х	+	-	
Au	1 – 6	0,9 – 1,1	Х	++	-	Bondpads, MIL, HF
AuPd	20 – 100	0,6 – 0,8	Х	++	-	MIL
AuPt	20 – 100	0,7 – 0,9	Х	+		gut lötbar
Cu	1 – 4	0,5 – 0,7	Х	±	++	

Löseraten

Löserate von Metalldrähten

Source: Hanke "Hybridträger"; Prudenziati (Sn60Pb40) © Fraunhofer IKTS

Ablegierfestigkeiten von Dickschichtpasten

Ablegierfestigkeit

Weichgelötete Goldpaste

Beispiel Silbermigration

- Potentialunterschied 5 Volt
- Wassertropfen wird per Hand aufgesetzt

Pastenlegierungen

Typische AgPd Paste

Typische AgPt Paste

Materialien der Hybridtechnik

Widerstandspasten

Widerstands- und Heizpasten

- Bi₂Ru₂O₇, Pb₂Ru₂O_{6,5},
 RuO₂, Ag/Pd/PdO
- Glas
- TKR-Modifier
- Additive

- Festwiderstände
- Leistungswiderstände
- Potentiometer
- Heizer
- Temperatursensoren
- Drucksensoren

Ŷ

- Definierter Flächenwiderstand
- Kleiner oder großer
 Temperaturkoeffizient
- Hohe Stabilität (150°C, 85°C 85%RH)
- Elektrische Belastbarkeit
- Dehnungsempfindlichkiet

Der Begriff "Flächenwiderstand"

Widerstandspasten Kennwerte Datenblatt Heraeus R8900 Serie

Heraeus

Resistors Resistors

Air Fired Resistor System

Description

The Heraeus resistor R 8900 Series resistor materials are part of complete thick film materials system. Materials in this system are designed for production of high reliability, commercial and industrial hybrid microcircuit and resistor networks. The Series is entirely free of cadmium, nickel and phthalate, and it shows additionally the following key advantages:

- Excellent noise and STOL values
- Compatible with C 2000 Series (Ni and Cd-free)
- R 8900 Series offers a range of 1 Ω / □ 1 MΩ / □.

R 8900 Series ^{2, 3}	R 8911	R 8921	R 8931	R 8935 L	R 8935 HN ¹⁰	R 8941 N ¹⁰	R 8951 N ¹⁰	R 8961 N ¹⁰
Resistivity ⁴ [Ω/□]	10 ± 10%	100 ± 10%	1 k ±10%	5 k ±10%	5 k ± 10%	10 k ±10%	100 k ±10%	1 M ±10%
Temperature coefficient of resistance ⁴ TCR [ppm/K]	± 100	± 100	± 100	± 100	± 100	± 100	± 100	± 100
Voltage coefficient of resistance ⁵ VCR [ppm/V/mm]	-	-	-	-	-	-50	-	-
Short term overload voltage ⁶ [V/mm]	9	28	87	155	180	238	497	524
Standard working voltage ⁷ [V/mm]	3.6	11	35	62	72	95	199	209
Maximum rated power dissipation ⁸ [mW/mm ²]	1300	1280	1220	770	1040	910	395	44
Quan tech noise ⁹ [dB]	-	-32	-21	-10	-13	-10	-3	-

Typical Fired Resistor Properties ¹)

Schichterzeugung

Schichtherstellung

Paste	Substrat
Schichtauftrag	Strukturierter Schichtauftrag mittels Siebdruck
Temperaturprozess	
Trocknen	Verdampfen der für den Siebdruck erforderlichen Lösungsmittel
Brennprozess	
Ausbrennen	Entfernung der für die Schichtstabilität nach dem Trocknen und für die Einstellung der Fließeigenschaften der Paste beim Siebdruck notwendigen organischen Binder
Einbrennen	Ausbildung der inneren Stabilität der Schicht sowie der Haftfestigkeit zum Trägersubstrat und Ausbildung der funktionellen Eigenschaften
Gebrannte Schicht	

Strukturierter Schichtauftrag

Siebdruck

Einordnung:

Siebdruck hat hohe Bedeutung im grafische Gewerbe in der Elektroniktechnologie sowie in der Photovoltaik.

Ziel:

Abbildung der zu realisierenden Struktur durch das Durchdrucken einer Druckform mit Paste

Alternativ (im Bereich der Dickschichthybridtechnik):

- Dünnschichttechnik (siehe Kapitel: "Dünnschicht" sowie Script AVT I)
- Fotostrukturierung von Dickschichtpasten "Fodel[®]" (siehe Kapitel: "Siebdruck")
- Druckformlose Verfahren / Direktschreibverfahren von Dickschichtpasten:
- InkJet Druck
- Aerosoldruck

Einsatz alternativer Strukturierungsverfahren

- InkJet Druck
- Aerosoldruck

(Vermutete) Vorteile:

- exaktere Geometrie (geringere Toleranzen)
- genauere und geringere Strukturauflösung (derzeit nicht unter 100 µm im SD in Serie)
- - steuerbare Schichtdicken

Vergleich Drucktechniken

	Siebdruck (Hotmelt)	Tampondruck	Ink-Jet-Druck	Aerosol Druck
Minimale Leiterbahnbreite	ca. 60 µm	ca. 40 µm	ca. 40 µm	ca. 10 - 15 µm
Maximale Leiterbahnbreite	flächig	flächig	bis zu 500 µm	bis 5 mm
Bahnhöhe	5-20 (40) μm	5-100 µm	ca. 0,1 µm	0,25 µm – 10 µm (durch Mehrfachdruck)
Viskosität Tinten/Pasten	>10.000 mPa·s	>10.000 mPa·s	5 – 15 mPa∙s	0,7 – 1.000 mPa·s
3D Direkt Schreiben	planar/ tubular	planar/ sphärisch	planar	möglich (Höhen- unterschiede bis 5 mm)

Quelle: SF2020; IKTS Partsch, Fritsch, Mosch

Ink-Jet Anlage

Printing principle

DoD300 from Schmid Tec.

Specifications

Brand	Schmid
Home	Germany
Туре	DoD300
Ink-Jet Principle	Piezo DoD
Print head	Dimatix, Konica- Minolta, more
Number of nozzles	up 512 scale able
Nozzle ∅ µm	variable (< 15 µm possible)
Drops pL	e.g. 430
η ink mPas	615
Particles µm	< 15
Positioning	x-y-(z)
Printing area mm ²	300*300
Accuracy µm	± 10
Printing speed mm/s	< 1000
Dimensions L·B mm ²	900*1500
Remarks	Industrial inline compatible printer

Quelle: Fritsch IKTS

Direktstrukturierung - InkJet Druck

("Tintendrucker am PC")

Quelle: Fritsch IKTS

Direktstrukturierung – Aerosoldruck

("Mikro Spray Dose")

Quelle: Mosch IKTS

Direktstrukturierung – Aerosoldruck

("Mikro Spray Dose")

Quelle: Optomec, IDTec Dresden 2008

Druckformen

Siebherstellung: 1. Rahmen

Bild: Gröner Siebdruck

Bild: Böttcher Siebdruck

Siebherstellung: 2. Sieb einkleben

Siebbespannung

Dr. Lars Rebenklau; FhG IKTS 2017

Gewebearten

Leinenbindung (Glatte Bindung) Wechsel 1-1

Köperbindung Wechsel 2-2

5-Schaft-Köperbindung (Atlasbindung) Wechsel 4-1

Quelle: Dr. L. Luniak, TUD/IAVT

Siebbelastung

V Screen Gewebe

- 30 µm Fäden aus V-Screen (VECRY)
- Edelstahl (SUS304)
- Polyester (PET)
- Quelle Bilder: <u>www.koenen.de</u>

Siebherstellung: 3. Emulsion beschichten

Das erfolgt mit Folie!! Ich hatte bloß kein anderes Bild!!

Bild: Wikipedia

Vergleich: direkte vs. indirekte Siebbeschichtung

Prinzipdarstellung: nicht Maßstäblich!

Siebherstellung: 4. Emulsion härten

Bild: memmert

Siebherstellung: 5. Belichten mit Fotoplott

Siebherstellung: 6. Entwickeln

Bild: walterlemmen.de

Siebherstellung: 7. Randbeschichtung/Trocknen

Bild: Könen

Siebgewebe (ausgewählte Siebparameter)

© Fraunhofer IKTS

Siebparameter

• Drahtdurchmesser d (µm)	16 70
• Maschenweite w (µm)	20 300
 Meshzahl m (Maschen pro Zoll) 	70 600
 Öffnungsverhältnis ö (%) 	25 70
• Gewebedicke D _G (µm)	30 150
 Theoretisches Farbvolumen V_{th} (cm³/m²) 	20 100

$$w = \frac{25,4mm}{m} - d \qquad D_G = (2 \dots 2,5)d$$

$$\ddot{o} = \frac{W^2}{(w+d)^2} \qquad (Kalandriert - 20\%)$$

$$V_{th} = \ddot{o} * (D_G + E_D)$$

kommerzielle Siebgewebe

	Ge	webe-	Maschen- weite	Draht- stärke	Maschen- anzahl	offene Siebfläche	Gewebe- dicke	theoret. Farbauftrag	Gewebe- dicke	theoret. Farbauftrag
	bezeichnung		w in µm	d in µm	25.4 mm	A in %	D in µm	V., cm3/m2	D, in µm	V., cm3/m2
	SD+	32/18	32	18	500	41 %	36 ± 2	15	32 ± 2	13
	SD+	40/23	40	23	400	40 %	46 ± 2	19	40 ± 2	16
	SD+	40/25	40	25	400	38 %	50 ± 2	19	42 ± 2	16
	SD+	45/18	45	18	400	51 %	36 ± 2	18	31 ± 2	16
	SD+	56/16	56	16	350	60 %	33 ± 2	20	27 ± 2	16
	SD+	50/28	50	28	325	41 %	56 ± 2	23	49 ± 2	20
	SD+	50/30	50	30	325	39 %	60 ± 2	23	50 ± 2	20
	SD+	53/24	53	24	325	47 %	48 ± 2	23	38 ± 2	18
	SD+	56/32	56	32	300	40 %	64 ± 2	26	52 ± 2	21
	SD+	63/36	63	36	250	40 %	72 ± 2	29	61 ± 2	25
	SD+	65/20	65	20	300	58 %	40 ± 2	23	30 ± 2	18
	SD+	67/25	67	25	280	53 %	50 ± 2	27	40 ± 2	21
	SD+	71/30	71	30	250	49 %	60 ± 2	30	48 ± 2	24
1	SD+	75/36	75	36	230	46 %	72 ± 2	33	59 ± 2	27
50.	SD+	80/30	80	30	230	53 %	60 ± 2	32	49 ± 2	26
CTS	SD+	85/25	85	25	230	60 %	50 ± 2	30	37 ± 2	22
± ∪	SD+	90/36	90	36	200	51 %	72 ± 2	37	57 ± 2	29
ЕР	SD+	90/40	90	40	200	48 %	80 ± 2	38	65 ± 2	31
au;	SD+	98/30	98	30	200	59 %	60 ± 2	35	47 ± 2	28
nkl	SD+	265/50	265	50	80	71 %	100 ± 2	71	60 ± 2	42
Dr. Lars Rebe Dr. Lars Rebe	lde	er: <u>vvv</u>	<u>ww.kc</u>	enen.	<u>de</u>					

Minimale Strukturaufösung

50 µm Linie, 400 mesh, d=30µm

50 µm-Linie, 400 mesh, d=18µm

Minimale Strukturauflösung

50 µm Linie, 300 mesh, d=20µm

50 µm Linie, 400 mesh, d=25µm

Einsatz von Druckformen

Einsatz von Druckformen

Siebart		Technologie	Bemerkung	Standzeit
Gewebesieb	direkt	Emulsionsauftrag (fotoempfindlich)	unkontrollierte Emulsionsdicke, Auflösung maschenquerender Strukturen mangelhaft	sehr hohe Standzeit (bis 100.000 Drucke)
	indirekt	fotoempfindlicher Film	kontrollierte Emulsionsfilmdicke, Auflösung maschenquerender Strukturen hervorragend	schneller Herstellungsprozess, mittlere Standzeit
	direkt/ indirekt	Fotoempfindlicher Film (Druckseite) und fotoempfindliche Emulsion	kontrollierte Emulsionsfilmdicke, Auflösung maschenquerender Strukturen gut	gute Detailtreue, hohe Standzeit
Metallfolien Kontaktdruck	etallfolien direkt Metallfolie, Lochstruktur von ontaktdruck oben und Druckstruktur von Druckseite geätzt		sehr gute Detailtreue und Kantenschärfe bei an Druckstruktur angepasste Lochstruktur	extrem hohe Standzeit (!! bei sehr sorgfältigem Handling !!, Preis)
		Laserstrukturiert, Kuststoffauftrag (außerhalb der Drucköffnungen) zur Abdichtung beim Druck	bei angepasster Lochstruktur <50 μm Linienbreite/-abstände möglich	Abnutzung der Kunsttoffschicht
	indirekt	strukturierte Metallfolie (geätzt, laserstrukturiert, gestanzt)	auf Gewebesieb (unbeschichtet) geklebt oder gelötet	Gefahr der Abscherung der Folie
Metallfolien Absprungdruck	indirekt	strukturierte Metallfolie (geätzt, gebohrt, laserstrukturiert, gestanzt)	Rand der strukturierten Folie auf gespanntes Gewebesieb geklebt, Gewebe über Druckstruktur entfernt	Gefahr der Abscherung

Quelle: Jillek, Keller "Handbuch der Leiterplattentechnik"

Einsatz von Druckformen

	Kantenschärfe	Geometrische Auflösung	Passergenauigkeit	Schichtdicke	Standzeiten	Herstellungsaufwand	Einsatzgebiet
direktes Emulsionssieb (einfach beschichtet)					+	++	breiter Einsatz für einfache Anwendungen und große Stückzahlen
direktes Emulsionssieb (einfach beschichtet, mit Auflage)	-	-	-		+	++	breiter Einsatz für einfache Anwendungen und große Stückzahlen
direktes Emulsionssieb (Mehrfachbeschichtung)	+	+	+	++	±	±	breiter Einsatz
indirektes Sieb	++	++	++	++		+	kleine Stückzahlen
indirekte Metallschablose	+	+	++	++	±		besonders Lotpastendruck
Lochplatte (Himesh-Platte)	++	++	++	++	+	+	
direkte Metallmaske	++	++	++		-(+)		Präzisionssiebdruck
Metallochmaske, beidseitig geätzt	+	++	++	++	+(-)	+(-)	Lotpads, Vias

Quelle: Hanke: "Hybridträger"

Siebdruck

Prinzip Siebdruck

- 1 Siebrahmen
- 2 Schablonenträger (Siebgewebe)
- 3 Epoxydharzkleber
- 4 Siebdruckschablone (Fotopolymer) 5 Druckbild (Struktur)
- 6 Substrat
- 7 Drucktisch
- 8 Rakel
- 9 Dickschichtpaste
- 10 Siebschleppe
- 11 Druckstruktur (Druckstrukturbild)
- A Absprung
- F Rakelanpresskraft
- v Rakelgeschwindigkeit

Begriffe: (vgl. auch DIN 16 610)

Quelle: Hanke "Hybridträger"

Einflussfaktoren in der Dickschichttechnik

Quelle: Jillek, Keller: Handbuch der Leiterplattentechnik Bd. 4

Wesentliche Einflussfaktoren während des Siebdrucks

- Absprung
- Rakelgeschwindigkeit
- Rakeldruck
- Verfahrlänge
- Siebvorspannung, Siebgröße
- Druckbildgröße
- Pastenrheologie
- Umweltbedingungen (Temperatur, Luftfeuchtigkeit, …)

—

Prinzipieller Aufbau eines Siebdruckers

Pastenrheologie

Messung der Fließ- und Viskositätskurven im CR-Modus

Vorgabe – Scheerratenstufenprofil um konstante Strömungsbedingungen zu gewährleisten.

Messergebnis – Fließ- und Viskositätskurven

Modellmessungen

Viskositäts-Zeit-Kurve – graphische Darstellung thixiotropes Fließverhalten

Quelle: G. Schramm "Einführung in Rheologie und Rheometrie"

Messung der Strukturabbau der Probe – 3-Phasen-Messung:

Quelle: K. Nieweglowski; L. Rebenklau Projekt: NanoSieb TU Dresden 2007

3. Phase

Auslösen der Paste !!

```
Prinzipbild: Nicht maßstäblich!
```


4. Phase

Prinzipbild: Nicht maßstäblich!

Einfluss der Siebparameter auf das Druckbild

Quelle: John Oleksyn DuPont Bristol UK

Einflussgrößen auf Druckprozess (Auswahl)

	I. Phase - Strömung der Paste vor der Rakel	II. Phase - Strömung der Paste durch die Druckformöffnung	III Phase - Entformung der Paste	IV Phase - Ausgleich der Paste auf Substrat
Pasten- einflüsse	 Viskosität Pastenvolumen 	 Viskosität Thixotropie Teilchengröße Fließgrenze 	 Viskoelastizität Viskosität Adhäsionskräfte 	 Viskosität Thixotropie Oberflächen- spannung Fließgrenze Teilchenform
Prozess- einflüsse	 Rakelwinkel Druckgeschwindigkeit Rakelkraft 	 Druckgeschwindigkeit Rakelkraft 	• Abhebe- geschwindigkeit	
Druckform- einflüsse	• Eigenschaften der Druckformoberfläche	 Geometrie der Druckstruktur Druckformdicke 	 Geometrie der Druckstruktur Wandungsfläche Druckformabmessun g Siebspannung 	• Schichtdicke
Druckstruk- tureinflüsse		SiebgewebeDruckstruktur	• Grundfläche auf dem Bedruckgut	• Strukturbreiten, - abstände

Siebdruck Bsp. EKRA

Brennprofil

Thermische Prozesse

allgemein: Trockenprozess Ausbrennprozess Einbrennprozess	 Verdampfen der Lösungsmittel Adsorption der Druckträgerpolymere auf den Feststoffteilchen Polymerzersetzung und -entfernung durch Oxidation und / oder Pyrolyse Glaserweichung und Ausbildung der mechanischen Haftmechanismen 			
	 Ausbildung des chem Oxidations- und Redu Kristallisation von Gl 	asprozesse nischen Haftmechanismus uktionsreaktionen äsern		
Pastenart	Trocknungsbedingunge	n weitere Temperaturproze	esse	
CERMET-Pasten (Leit-, Widerstands-, Isolationspasten)	Trocknen 120 °C - 150 °C	Ausbrennen 200 °C - 500 °C im allgemeinen wird das A Brennprozess in einem Tu	Einbrennen > 500 °C typisch 850 °C, 900 °C, 925 °C Ausbrennen und Einbrennen als unnelofen durchlaufend.	
Abdeckpasten	Trocknen 120°C - 150 °C	Ausbrennen 200 °C - 500 °C	Einbrennen bzw. Aufschmelzen typisch 450 °C, 500°C	
Lotpasten Polymerpasten (Leit-, Widerstands-, Isolationspasten)	Trocknen bei Raumtemperatur Trocknen 60 °C - 125 °C	Aufschmelzen 200 °C - 280 °C Aushärten 150 °C - 400 °C		

Schematischer Aufbau eines Dickschichtofens

Einfluss ungenügender Gasmenge beim Einbrennen

Leiterbahnen	Widerstände	Dielektrika
hoher Widerstand	kleiner Widerstand	Blasenbildung
schlechte Oberflächenrauhigkeit	großer Widerstand	hohe Porösität
schlechte Lötbarkeit	schlechte Oberfläche	hohes tan δ
geringe Haftung		

Einordnung Dickschichtverdrahtungsträger

Technologieablauf beim Mehrebenenaufbau

Leitstrukturdruck / Trocknen				
Brennen	850	°C		
Isolationsdruck / Trocknen				
Brennen	850	°C		
Isolationsdruck / Trocknen				
Brennen	850	°C		
Leitstrukturdruck / Trocknen				
Brennen	850	°C		
Widerstandspastendruck /	Trockr	nen		
Brennen	850	°C		
Abdeckpastendruck / Trocknen				
Brennen	500	°C		

Technologietreiber

Quelle: 1998 National Electronics Manufacturing Technology Roadmaps

Technologietreiber "Performance" – Moore's Law

"Note: Vertical scale of chart not proportional to actual Transistor count.

Technologietreiber "Performance" – > Roadmap 2003

Jahr	2004	2005	2006	2007	2008	2009
max. Verlustleistung [W]						
Low-cost	2,7	2,8	3,0	3,0	3,0	3,0
High-performance	160	170	180	190	200	200
max. Anschlusszahl						
Low-cost	122-500	134-550	144-600	160-660	180-720	180-800
High-performance	3000	3400	3800	4000	4400	4600
Chip-board-Freq. [MHz]						
Low-cost	100	100	100	100	100	100
High-performance	2500	3125	3906	4883	6103	7629
max. JuncTemp. [°C]						
Low-cost	90	85	85	85	85	85
High-performance	90	85	85	85	85	85

TCM Modul 1

Quelle: www.ibm.com

TCM Modul 2

Standardprozess LTCC

Technologieablauf LTCC

M. Luniak, TUD IAVT

Technologieablauf LTCC

M. Luniak, TUD IAVT

Via Stanzen

Aufbau eines Stanzwerkzeuges: (schematisch)

- Stanzstempel
- Absteiferbuchse
- LTCC-Grünfolie
- Schnittbuchse

Stanzwerkzeug in der Praxis:

- Präzisions-Stanzwerkzeug mit Mehrfachstempelanordnung
- Substrathalterung (Saugrahmen)
- LTCC-Substrat

Automatische Stanzanlage:

- Entnahme der Folien aus Kassette
- Stanzen
- Inspektion
- Ablage in Einzeltrays

Technologieablauf LTCC

M. Luniak, TUD IAVT

Prinzip Siebdruck

1 Siebrahmen

- 2 Schablonenträger (Siebgewebe)
- 3 Epoxydharzkleber
- 4 Siebdruckschablone (Fotopolymer) 5 Druckbild (Struktur)
- 6 Substrat
- 7 Drucktisch
- 8 Rakel
- 9 Dickschichtpaste
- 10 Siebschleppe
- 11 Druckstruktur (Druckstrukturbild)
- A Absprung
- F Rakelanpresskraft
- v Rakelgeschwindigkeit

Begriffe: (vgl. auch DIN 16 610)

Quelle: Hanke "Hybridträger"

Technologieablauf LTCC

M. Luniak, TUD IAVT

Laminationsverfahren

Technologieablauf LTCC

M. Luniak, TUD IAVT

Einbrennprofil für 850 °C Temperaturprofil (Standard DS)

Brennprofil LTCC z.B. DP 951

Recommended Firing Profile

Quelle: Datenblatt DP 951

Schematischer Aufbau eines Dickschichtofens

Ausbrand

Sinterschrumpf kommerzieller LTCC Materialien

Konzepte zur Unterdrückung des Sinterschrumpfes

	UCS	TOS	PAS	PLAS	SCS
	Sintem	starres Substrat	poröser Setter Opferlage Opferlage	Haltefolie Haltefolie Sintern, Opferlagen entfernen	Sintern
		starres Substrat			
laterale Schrumpfung	12 - 18 %	gering, nimmt mit höherer Dicke zu	0,0-0,3~%	0,2 - 0,4 $\%$ (Kantenbereich)	0,2 - 0,4 %
Toleranzen	0,15 - 0,4 $\%$	dickenabhängig	0,05 - 0,1 $\%$	0,10%	0,04%
max. Lagenzahl	nahezu unbegrenzt	begrenzt	nahezu unbegrenzt	begrenzt	begrenzt
Folgeprozesse	nach Sintern so- fort bereit für Fol- geprozesse	nach Sintern so- fort bereit für Fol- geprozesse	Nachbearbeitung nach Sintern notwendig	Nachbearbeitung nach Sintern notwendig	nach Sintern so- fort bereit für Fol- geprozesse
Verfügbarkeit	Vielzahl von Materialien ver- fügbar	eingeschränkte Materialauswahl	wenige Folien und Pasten verfügbar	wenige Folien und Pasten verfügbar	Einführung erster Foliensysteme, Pasten einge- schränkt
Firmen	alle	Heraeus ESL	DuPont Heraeus (CT800)	DuPont	Heraeus (HL2000, HL800) Bosch

Quelle: Rebenklau, Wolter, Hildebrandt "Zero-Shrink-Studie" TUD 2007

Vielen Dank für die Aufmerksamkeit!

