Vorlesung

Keramische Hybridtechnik/Multilayertechnik SS 2017

Dr. Lars Rebenklau, Systemintegration und AVT

Inhalt

Einordnung der Hybridtechnik

- Anwendungen, Anforderungen, ...
- Realisierungsvarianten keramischer Verdrahtungsträger

Materialien der Hybridtechnik

- Substrate / Pasten
- Druckformen

Prozess

- Siebdruck
- Thermische Prozesse

Technologie

- Einebenentechnik
- Mehrebenentechnik (cross over Technik, Komplementärdrucktechnik)

Multilayertechnik

Literaturempfehlungen zur Dickschichttechnik

Reichl: Hybridintegration

Hüthig Verlag Heidelberg; 1988

Hanke: Hybridträger

Verlag Technik Berlin; 1994

Jillek, Keller: Handbuch der Leiterplattentechnik Bd. 4

Leuze Verlag; 2004

Schramm: Einführung in die Rheologie und Rheometrie

Gebr. Haake GmbH

Tagungsbände: IMAPS; ECTC; ...

Einordnung der Hybridtechnik

Was ist Dickschichttechnik?

"keramische Leiterplatte"

Keramiksubstrat bedruckt mit Pasten eines Systems

Pasten eines Herstellers die untereinander kompatibel sind und die zusammen verarbeitet werden.

Bsp.: Praktikumsschaltkreis TUD/IAVT

Wesentliche Vorteile gegenüber Leiterplatte:

- Thermische Leitfähigkeit
- Angepasster TCR (Silizium Keramik)
- Temperaturstabil
- Massentaugliche Fertigung möglich

Technologievergleich

Vergleichsgröße	SMT	Dickschicht	Dünnschicht	Monolith
Miniaturisierungsgrad	-	+-	+	++
Einsatzmöglichkeiten	+	++	++	+-
Max. Verlustleistung	-	++	+-	-
Entwicklungszeit	++	+-	+	
Zuverlässigkeit	-	+	+	++
Fertigungskosten, kl. Stückzahlen	++	+-	+	
Fertigungskosten, mittl. Stückzahlen	+	+	+-	+-
Fertigungskosten, gr. Stückzahlen	-	+	-	++
Invest und Betriebskosten	++	+	-	

++, sehr gut,, -- sehr schlecht, sehr ungünstig

Quelle: Reichl, FhG IZM

Dr. Lars Rebenklau; FhG IKTS 2017

Einordnung von Elektronikprodukten

"low cost" z.B. Smart Label, ... Consumer Zuverlässigkeit **Preis** MP3-Player, PC, Bildschirme, Automobil Getriebesteuerung, ... Luft- und Raumfahrt Steuergeräte, ... Kraftwerks- und High Sicherheitstechnik performance Steuergeräte, ... hoch Medizintechnik Herzschrittmacher, ...

gering

Technologietreiber: "Einsatzgebiet und Volumen"

Loading of an airframe & Non-destructive testing

Non-destructive testing (NDT) is needed in order to ensure the integrity of the airframe.

Dr. Clemens Bockenheimer, Testing Technology - ESWNG

February 2006

AIRBU!

Quelle: Google; Suchworte: SHM+ Airplane

Technologietreiber: "Einsatzgebiet und Volumen"

Structural Health Monitoring (SHM)

SHM as aspect of Airbus 'intelligent' airframe

Quelle: Google; Suchworte: SHM+ Airplane

Technologietreiber: "Einsatzbedingungen" -> Bsp.

Automobilelektronik

Steuergeräte für Kfz

Einsatzgebiet Kfz-Elektronik

Einsatz Dickschichthybride

Einordnung nach Metallisierungsstrukturierung

Inhalt

Einordnung der Hybridtechnik

- Anwendungen, Anforderungen, ...
- Realisierungsvarianten keramischer Verdrahtungsträger

Materialien der Hybridtechnik

- Substrate / Pasten
- Druckformen

Prozess

- Siebdruck
- Thermische Prozesse

Technologie

- Einebenentechnik
- Mehrebenentechnik (cross over Technik, Komplementärdrucktechnik)

Multilayertechnik

Materialien der Hybridtechnik Substrate/Pasten

Vergleich Substratmaterialien

Eigenschaft	Al ₂ O ₃	BeO	ESS	AIN	FR4	Si3N4
max. Prozesstemperatur in °(≥ 1500	≥ 1800	550 – 650 (≥900)	≥1600	288	
Therm. Ausdehnungskoeff. in 10 ⁻⁷ / K	75	85	90	34	10 - 25	35
Thermische Leitfähigkeit in W/mK	20	230	60 80	150 180	0,2 - 0,4	85
Biegefestigkeit in N/mm ²	320	170	-	300		800
Oberflächenrauhigkeit in µm	0,5	≤0,5	-	1 - 5		
Spez. elektr. Widerstand in Ω /cm bei 20 °C	10 ¹⁴	≥10 ¹⁵	≥10 ¹⁴	10 ¹³		10 ¹²
Dielektrizitätszahl	9,5	7,0	6 – 8	10,0	3,6 - 4,8	8,4
Kostenfaktor ca.	1	50	0,5 - 2	20 40		??

Einfluss der Wämeleitfähigkeit

AIN

A2O3

LTCC

180

20

3-4

W/mK

W/mK

W/mK

Verarbeitungs- und Qualitätsmerkmale von Schichten / Funktionale Schichtqualität

- Flächenwiderstand
- Isolationswiderstand
- Durchschlagsspannungsfestigkeit

Elektrische Eigenschaften

- Relative Dielektrizitätskonstante
- Kapazitiver Verlustfaktor

Mechanische Eigenschaften

- thermischer Ausdehnungskoeffizient
- Wärmeleitfähigkeit
- Thermische Verlustleistungsdichte

Thermische Eigenschaften

- Thermischer Ausdehnungskoeffizient

Dr. Lars Rebenklau; FhG IKTS 2017

Verarbeitungs- und Qualitätsmerkmale von Schichten / Verarbeitung der Paste im Prozess

Pastenkompatibilität, Verdruckbarkeit

Schichtsysteme

- Ablegierfestigkeit
- Lotbenetzbarkeit
- Drahtbondbarkeit
- Schichtdicke
- Strukturauflösung
- Schrumpfungsrate
- Thermischer Ausdehnungskoeffizient

Kontaktsysteme

Verdrahtungsdichte

Was sind Dickschichtpasten?

 Pseudoplastische, strukturviskose Dispersionen von anorganischen Pulvern in einem organischen Druckträger, die mittels Siebdruck auf einem Substrat abgeschieden werden können

Quelle: C. Kretzschmar

Arten von Dickschichtpasten

- **■** Leitpasten
 - Lötbar
 - Bondbar
 - **...**
- Isolationspasten
- Widerstandspasten
 - Temperaturstabil
 - ...

Dreiwalzwerk

Zusammensetzung von Dickschichtpasten

Wirkphase	Druckträger, Organische Binder	Lösungsmittel	Gläser			
Metall, Metalloxide, Glas, Keramik	Ethylzellulose, Acetate u.a.	Terpinöl u.a.	Borosilikatglas wismuthaltige Gläser u.a.			
Prozentualer Gewichtsanteil						
(30 70)%	(12	(10 20)%				
Funktion / Einflüsse						
elektrische Schicht- eigenschaften	 rheologische Pasteneigen- schaften mech. Stabilität der getrockneten Paste 	rheologische Pasteneigen- schaften	mech. Stabilität und Haftfestigkeit der Schicht			

Prinzip Pastenherstellung

Pastenstrukturierung

Haftmechanismen

"glas bonded system"

Glas diffundiert in das Metall-Keramikinterface

→ Mechanische Haftmechanismen

"fritless conductor"

Zugabe von Oxiden; z.B. CuO, CdO, NiO; Reaktion z.B. zu CuAlO₂

→ Chemische Haftmechanismen

Mischformen

Bestandteile des Glases

Netzwerkbildner: SiO₂, B₂O₃, P₂O₅ ...

Grundgerüst des Glases in Form eines unregelmäßigen, räumlichen **Netzwerkes**

→ Gewährleistung der strukturellen Integrität

Netzwerkwandler: Na₂O, CaO, MgO, Y₂O₃ ...

Brechen das Netzwerk auf und bilden Trennstellen

- → Wandlung der Glasstruktur
- → Beeinflussung der Glaseigenschaften

Zwischenoxide: Al₂O₃, PbO, Bi₂O₃ ...

Wirken in Abhängigkeit von Anteil und Glaszusammensetzung netzwerkbildend & wandelnd

→ Stabilisierung der Glasstruktur

Materialien der Hybridtechnik

Leitpasten

Perkolationsschwelle (Leitpasten)

Dr. Lars Rebenklau; FhG IKTS 2017

Vergleich Leitpasten

Pasten- material	Widerstan d in mΩ⁄⁄□	Adhäsion in kg/mm²	Löten	Bonden	Preis	Bemerkung
Ag	1 – 10	0,7 – 0,9	Х		+	Ag-Migration
AgPd	10 – 30	0,9 – 1,1	Х	±	±	Standardpaste
AgPt	3 – 20	0,9 – 1,1	Х	+	-	
Au	1 – 6	0,9 – 1,1	X	++	-	Bondpads, MIL, HF
AuPd	20 – 100	0,6 – 0,8	Х	++	-	MIL
AuPt	20 – 100	0,7 – 0,9	Х	+		gut lötbar
Cu	1 – 4	0,5 – 0,7	X	±	++	

Löseraten

Löserate von Metalldrähten

Ablegierfestigkeiten von Dickschichtpasten

Weichgelötete Goldpaste

Beispiel Silbermigration

- Potentialunterschied 5 Volt
- Wassertropfen wird per Hand aufgesetzt

Pastenlegierungen

Typische AgPd Paste

Typische AgPt Paste

Materialien der Hybridtechnik

Widerstandspasten

Widerstands- und Heizpasten

- Bi₂Ru₂O₇, Pb₂Ru₂O_{6,5}, RuO₂, Ag/Pd/PdO
- Glas
- TKR-Modifier
- Additive

- Festwiderstände
- Leistungswiderstände
- Potentiometer
- Heizer
- Temperatursensoren
- Drucksensoren

- Definierter Flächenwiderstand
- Kleiner oder großer Temperaturkoeffizient
- Hohe Stabilität (150°C, 85°C 85%RH)
- Elektrische Belastbarkeit
- Dehnungsempfindlichkiet

Der Begriff "Flächenwiderstand"

R_F: Flächenwiderstand

Widerstandspasten Kennwerte Datenblatt Heraeus R8900 Serie

■ ■ ■ ■ Resistors

R 8900 Series

Air Fired Resistor System

Description

The Heraeus resistor R 8900 Series resistor materials are part of complete thick film materials system. Materials in this system are designed for production of high reliability, commercial and industrial hybrid microcircuit and resistor networks. The Series is entirely free of cadmium, nickel and phthalate, and it shows additionally the following key advantages:

- Excellent noise and STOL values
- Compatible with C 2000 Series (Ni and Cd-free)
- R 8900 Series offers a range of 1 Ω / □ 1 MΩ / □.

Typical Fired Resistor Properties 1)

R 8900 Series ^{2, 3}	R 8911	R 8921	R 8931	R 8935 L	R 8935 HN ¹⁰	R 8941 N ¹⁰	R 8951 N ¹⁰	R 8961 N ¹⁰
Resistivity ⁴ [Ω/□]	10 ± 10%	100 ± 10%	1 k ± 10%	5 k ± 10%	5 k ± 10%	10 k ± 10%	100 k ± 10%	1 M ± 10%
Temperature coefficient of resistance ⁴ TCR [ppm/K]	± 100	± 100	± 100	± 100	± 100	± 100	± 100	± 100
Voltage coefficient of resistance ⁵ VCR [ppm/V/mm]	-	-	-	-	-	-50	-	-
Short term overload voltage ⁶ [V/mm]	9	28	87	155	180	238	497	524
Standard working voltage ⁷ [V/mm]	3.6	11	35	62	72	95	199	209
Maximum rated power dissipation ⁸ [mW/mm ²]	1300	1280	1220	770	1040	910	395	44
Quan tech noise ⁹ [dB]	-	-32	-21	-10	-13	-10	-3	-

Quelle: Datenblatt Heraeus R 8900

Schichterzeugung

Schichtherstellung

Paste

Substrat

Schichtauftrag

Strukturierter Schichtauftrag mittels Siebdruck

Temperaturprozess

Trocknen Verdampfen der für den Siebdruck erforderlichen Lösungsmittel

Brennprozess

Ausbrennen

Entfernung der für die Schichtstabilität nach dem Trocknen und für die Einstellung der Fließeigenschaften der Paste

beim Siebdruck notwendigen organischen Binder

Einbrennen

Ausbildung der inneren Stabilität der Schicht sowie der Haftfestigkeit zum Trägersubstrat und Ausbildung der funktionellen Eigenschaften

Gebrannte Schicht

Strukturierter Schichtauftrag

Siebdruck

Einordnung:

Siebdruck hat hohe Bedeutung im grafische Gewerbe in der Elektroniktechnologie sowie in der Photovoltaik.

Ziel:

Abbildung der zu realisierenden Struktur durch das Durchdrucken einer Druckform mit Paste

Alternativ (im Bereich der Dickschichthybridtechnik):

- Dünnschichttechnik (siehe Kapitel: "Dünnschicht" sowie Script AVT I)
- Fotostrukturierung von Dickschichtpasten "Fodel®" (siehe Kapitel: "Siebdruck")
- Druckformlose Verfahren / Direktschreibverfahren von Dickschichtpasten:
- InkJet Druck
- Aerosoldruck

Dr. Lars Rebenklau; FhG IKTS 2017

Einsatz alternativer Strukturierungsverfahren

- InkJet Druck
- Aerosoldruck

(Vermutete) Vorteile:

- exaktere Geometrie (geringere Toleranzen)
- genauere und geringere Strukturauflösung (derzeit nicht unter 100 μm im SD in Serie)
- steuerbare Schichtdicken

Vergleich Drucktechniken

	Siebdruck (Hotmelt)	Tampondruck	Ink-Jet-Druck	Aerosol Druck
Minimale Leiterbahnbreite	ca. 60 µm	ca. 40 µm	ca. 40 µm	ca. 10 - 15 μm
Maximale Leiterbahnbreite	flächig	flächig	bis zu 500 µm	bis 5 mm
Bahnhöhe	5-20 (40) µm	5-100 μm	ca. 0,1 µm	0,25 μm – 10 μm (durch Mehrfachdruck)
Viskosität Tinten/Pasten	>10.000 mPa·s	>10.000 mPa·s	5 – 15 mPa·s	0,7 – 1.000 mPa·s
3D Direkt Schreiben	planar/ tubular	planar/ sphärisch	planar	möglich (Höhen- unterschiede bis 5 mm)

Quelle: SF2020; IKTS Partsch, Fritsch, Mosch

Ink-Jet Anlage

Printing principle

Printing platform

DoD300 from Schmid Tec.

Specifications

Brand	Schmid			
Home	Germany			
Type	DoD300			
Ink-Jet Principle	Piezo DoD			
Print head	Dimatix, Konica- Minolta, more			
Number of nozzles	up 512 scale able			
Nozzle ∅ µm	variable (< 15 µm possible)			
Drops pL	e.g. 430			
η ink mPas	615			
Particles µm	< 15			
Positioning	x-y-(z)			
Printing area mm ²	300*300			
Accuracy µm	± 10			
Printing speed mm/s	< 1000			
Dimensions L⋅B mm²	900*1500			
Remarks	Industrial inline compatible printer			

Quelle: Fritsch IKTS

Direktstrukturierung - InkJet Druck

("Tintendrucker am PC")

Quelle: Fritsch IKTS

Direktstrukturierung – Aerosoldruck

("Mikro Spray Dose")

Quelle: Mosch IKTS

Direktstrukturierung – Aerosoldruck

("Mikro Spray Dose")

Quelle: Optomec, IDTec Dresden 2008

Druckformen

Siebherstellung: 1. Rahmen

Bild: Gröner Siebdruck

Bild: Böttcher Siebdruck

Dr. Lars Rebenklau; FhG IKTS 2017

Siebherstellung: 2. Sieb einkleben

Siebbespannung

Gewebearten

Quelle: Dr. L. Luniak, TUD/IAVT

Siebbelastung

V Screen Gewebe

- 30 µm Fäden aus V-Screen (VECRY)
- Edelstahl (SUS304)
- Polyester (PET)

Quelle Bilder: www.koenen.de

Siebherstellung: 3. Emulsion beschichten

Das erfolgt mit Folie!! Ich hatte bloß kein anderes Bild!!

Bild: Wikipedia

Vergleich: direkte vs. indirekte Siebbeschichtung

Siebherstellung: 4. Emulsion härten

Bild: memmert

Dr. Lars Rebenklau; FhG IKTS 2017

© Fraunhofer IKTS

Siebherstellung: 5. Belichten mit Fotoplott

62 Fraunhofer

Siebherstellung: 6. Entwickeln

Bild: walterlemmen.de

Siebherstellung: 7. Randbeschichtung/Trocknen

Bild: Könen

Siebgewebe (ausgewählte Siebparameter)

Dr. Lars Rebenklau; FhG IKTS 2017

Siebparameter

• Drahtdurchmesser d (µm)	16 70
 Maschenweite w (μm) 	20 300
 Meshzahl m (Maschen pro Zoll) 	70 600
• Öffnungsverhältnis ö (%)	25 70
• Gewebedicke D _G (μm)	30 150
 Theoretisches Farbvolumen V_{th} (cm³/m²) 	20 100

$$w = \frac{25,4mm}{m} - d$$
 $D_G = (2 ... 2,5)d$ (Kalandriert –20%)

$$\dot{O} = \frac{W^2}{(W+d)^2}$$

$$V_{th} = \ddot{O} * (D_G + E_D)$$

kommerzielle Siebgewebe

	webe-	Maschen- weite	Draht- stärke	Maschen- anzahl	offene Siebfläche	Gewebe- dicke	theoret. Farbauftrag	Gewebe- dicke	theoret. Farbauftrag
beze	ichnung	w in µm	d in µm	25.4 mm	A, in %	D in µm	V _{th} cm ³ /m ²	D, in µm	V ₄ , cm ³ /m ²
SD+	32/18	32	18	500	41 %	36 ± 2	15	32 ± 2	13
SD+	40/23	40	23	400	40 %	46 ± 2	19	40 ± 2	16
SD+	40/25	40	25	400	38 %	50 ± 2	19	42 ± 2	16
SD+	45/18	45	18	400	51 %	36 ± 2	18	31 ± 2	16
SD+	56/16	56	16	350	60 %	33 ± 2	20	27 ± 2	16
SD+	50/28	50	28	325	41 %	56 ± 2	23	49 ± 2	20
SD+	50/30	50	30	325	39 %	60 ± 2	23	50 ± 2	20
SD+	53/24	53	24	325	47 %	48 ± 2	23	38 ± 2	18
SD+	56/32	56	32	300	40 %	64 ± 2	26	52 ± 2	21
SD+	63/36	63	36	250	40 %	72 ± 2	29	61 ± 2	25
SD+	65/20	65	20	300	58 %	40 ± 2	23	30 ± 2	18
SD+	67/25	67	25	280	53 %	50 ± 2	27	40 ± 2	21
SD+	71/30	71	30	250	49 %	60 ± 2	30	48 ± 2	24
SD+	75/36	75	36	230	46 %	72 ± 2	33	59 ± 2	27
SD+	80/30	80	30	230	53 %	60 ± 2	32	49 ± 2	26
SD+	85/25	85	25	230	60 %	50 ± 2	30	37 ± 2	22
SD+	90/36	90	36	200	51 %	72 ± 2	37	57 ± 2	29
SD+	90/40	90	40	200	48 %	80 ± 2	38	65 ± 2	31
SD+	98/30	98	30	200	59 %	60 ± 2	35	47 ± 2	28
SD+	265/50	265	50	80	71 %	100 ± 2	71	60 ± 2	42

Minimale Strukturaufösung

50 μm Linie, 400 mesh, d=30μm

50 μm-Linie, 400 mesh, d=18μm

Minimale Strukturauflösung

50 μm Linie, 300 mesh, d=20μm

50 μm Linie, 400 mesh, d=25μm

Einsatz von Druckformen

Einsatz von Druckformen

Siebart		Technologie	Bemerkung	Standzeit
Gewebesieb	direkt	Emulsionsauftrag (fotoempfindlich)	unkontrollierte Emulsionsdicke, Auflösung maschenquerender Strukturen mangelhaft	sehr hohe Standzeit (bis 100.000 Drucke)
	indirekt	fotoempfindlicher Film	kontrollierte Emulsionsfilmdicke, Auflösung maschenquerender Strukturen hervorragend	schneller Herstellungsprozess, mittlere Standzeit
	direkt/ indirekt	Fotoempfindlicher Film (Druckseite) und fotoempfindliche Emulsion	kontrollierte Emulsionsfilmdicke, Auflösung maschenquerender Strukturen gut	gute Detailtreue, hohe Standzeit
Metallfolien Kontaktdruck	direkt	Metallfolie, Lochstruktur von oben und Druckstruktur von Druckseite geätzt	sehr gute Detailtreue und Kantenschärfe bei an Druckstruktur angepasste Lochstruktur	extrem hohe Standzeit (!! bei sehr sorgfältigem Handling !!, Preis)
		Laserstrukturiert, Kuststoffauftrag (außerhalb der Drucköffnungen) zur Abdichtung beim Druck	bei angepasster Lochstruktur <50 µm Linienbreite/-abstände möglich	Abnutzung der Kunsttoffschicht
	indirekt	strukturierte Metallfolie (geätzt, laserstrukturiert, gestanzt)	auf Gewebesieb (unbeschichtet) geklebt oder gelötet	Gefahr der Abscherung der Folie
Metallfolien Absprungdruck	indirekt	strukturierte Metallfolie (geätzt, gebohrt, laserstrukturiert, gestanzt)	Rand der strukturierten Folie auf gespanntes Gewebesieb geklebt, Gewebe über Druckstruktur entfernt	Gefahr der Abscherung

Quelle: Jillek, Keller "Handbuch der Leiterplattentechnik"

Einsatz von Druckformen

	Kantenschärfe	Geometrische Auflösung	Passergenauigkeit	Schichtdicke	Standzeiten	Herstellungsaufwand	Einsatzgebiet
direktes Emulsionssieb (einfach beschichtet)					+	++	breiter Einsatz für einfache Anwendungen und große Stückzahlen
direktes Emulsionssieb (einfach beschichtet, mit Auflage)	-	-	-		+	++	breiter Einsatz für einfache Anwendungen und große Stückzahlen
direktes Emulsionssieb (Mehrfachbeschichtung)	+	+	+	++	±	±	breiter Einsatz
indirektes Sieb	++	++	++	++		+	kleine Stückzahlen
indirekte Metallschablose	+	+	++	++	±		besonders Lotpastendruck
Lochplatte (Himesh-Platte)	++	++	++	++	+	+	
direkte Metallmaske	++	++	++		-(+)		Präzisionssiebdruck
Metallochmaske, beidseitig geätzt	+	++	++	++	+(-)	+(-)	Lotpads, Vias

Quelle: Hanke: "Hybridträger"

Siebdruck

Prinzip Siebdruck

- 1 Siebrahmen
- 2 Schablonenträger (Siebgewebe)
- 3 Epoxydharzkleber
- 4 Siebdruckschablone (Fotopolymer) 5 Druckbild (Struktur)
- 6 Substrat
- 7 Drucktisch
- 8 Rakel
- 9 Dickschichtpaste
- 10 Siebschleppe
- 11 Druckstruktur (Druckstrukturbild)
- A Absprung
- F Rakelanpresskraft
- v Rakelgeschwindigkeit

Quelle: Hanke "Hybridträger"

Begriffe: (vgl. auch DIN 16 610)

Einflussfaktoren in der Dickschichttechnik

Quelle: Jillek, Keller: Handbuch der Leiterplattentechnik Bd. 4

Wesentliche Einflussfaktoren während des Siebdrucks

- Absprung
- Rakelgeschwindigkeit
- Rakeldruck
- Verfahrlänge
- Siebvorspannung, Siebgröße
- Druckbildgröße
- Pastenrheologie
- Umweltbedingungen (Temperatur, Luftfeuchtigkeit, ...)
- **....**

Prinzipieller Aufbau eines Siebdruckers

Pastenrheologie

Quelle: G. Schramm "Einführung in Rheologie und Rheometrie"

Fließ- und Viskositätskurven von verschiedenen Fließverhalten:

- 1 newtonsche
- 2 strukturviskose
- 3 dilatante
- 4 strukturviskose mit Fließgrenze

Messung der Fließ- und Viskositätskurven im CR-Modus

Vorgabe – Scheerratenstufenprofil um konstante Strömungsbedingungen zu gewährleisten.

Messergebnis – Fließ- und Viskositätskurven

Modellmessungen

Viskositäts-Zeit-Kurve – graphische Darstellung thixiotropes Fließverhalten

Quelle: G. Schramm "Einführung in Rheologie und Rheometrie"

Messung der Strukturabbau der Probe – 3-Phasen-Messung:

- ① Ruhephase
- 2 Belastungsphase
- 3 Entlastungsphase

Vorgabe - Scheerraten-Sprungfunktion

Messergebnis – Viskositäts/Scherspannungs-Zeit-Kurve

Auslösen der Paste!!

4. Phase

Einfluss der Siebparameter auf das Druckbild

Quelle: John Oleksyn DuPont Bristol UK

Einflussgrößen auf Druckprozess (Auswahl)

	I. Phase - Strömung der Paste vor der Rakel	II. Phase - Strömung der Paste durch die Druckformöffnung	III Phase - Entformung der Paste	IV Phase - Ausgleich der Paste auf Substrat
Pasten- einflüsse	ViskositätPastenvolumen	ViskositätThixotropieTeilchengrößeFließgrenze	 Viskoelastizität Viskosität Adhäsionskräfte	 Viskosität Thixotropie Oberflächen- spannung Fließgrenze Teilchenform
Prozess- einflüsse	RakelwinkelDruckgeschwindigkeitRakelkraft	DruckgeschwindigkeitRakelkraft	Abhebe- geschwindigkeit	
Druckform- einflüsse	• Eigenschaften der Druckformoberfläche	 Geometrie der Druckstruktur Druckformdicke 	 Geometrie der Druckstruktur Wandungsfläche Druckformabmessun g Siebspannung 	Schichtdicke
Druckstruk- tureinflüsse		Siebgewebe Druckstruktur	Grundfläche auf dem Bedruckgut	• Strukturbreiten, - abstände

Siebdruck Bsp. EKRA

Brennprofil

Thermische Prozesse

allgemein:

Trockenprozess - Verdampfen der Lösungsmittel

- Adsorption der Druckträgerpolymere auf den Feststoffteilchen

Ausbrennprozess

- Polymerzersetzung und -entfernung durch Oxidation und / oder Pyrolyse

Einbrennprozess

- Glaserweichung und Ausbildung der mechanischen Haftmechanismen

- Sinter- und Legierungsprozesse

- Ausbildung des chemischen Haftmechanismus

- Oxidations- und Reduktionsreaktionen

- Kristallisation von Gläsern

Trocknungsbedingungen weitere Temperaturprozesse Pastenart

CERMET-Pasten Trocknen

(Leit-, Widerstands-, 120 °C - 150 °C

Ausbrennen 200 °C - 500 °C Einbrennen

> 500 °C

typisch 850°C, 900°C, 925°C im allgemeinen wird das Ausbrennen und Einbrennen als

Brennprozess in einem Tunnelofen durchlaufend.

Abdeckpasten

Isolationspasten)

Trocknen 120°C - 150 °C Ausbrennen 200 °C - 500 °C Einbrennen bzw. Aufschmelzen typisch 450°C, 500°C

Lotpasten

Trocknen bei Raumtemperatur

Aufschmelzen 200 °C - 280 °C

Polymerpasten (Leit-, Widerstands-, 60 °C - 125 °C Ísolationspasten)

Trocknen

Aushärten

150 °C - 400 °C

Schematischer Aufbau eines Dickschichtofens

Einfluss ungenügender Gasmenge beim Einbrennen

Leiterbahnen	Widerstände	Dielektrika	
hoher Widerstand	kleiner Widerstand	Blasenbildung	
schlechte Oberflächenrauhigkeit	großer Widerstand	hohe Porösität	
schlechte Lötbarkeit	schlechte Oberfläche	hohes tan δ	
geringe Haftung			

Einordnung Dickschichtverdrahtungsträger

Technologieablauf beim Mehrebenenaufbau

Technologietreiber

Quelle: 1998 National Electronics Manufacturing Technology Roadmaps

Technologietreiber "Performance" – Moore's Law

"Note: Vertical scale of chart not proportional to actual Transistor count.

Technologietreiber "Performance" – > Roadmap 2003

Jahr	2004	2005	2006	2007	2008	2009				
max. Verlustleistung [W]										
Low-cost	2,7	2,8	3,0	3,0	3,0	3,0				
High-performance	160	170	180	190	200	200				
max. Anschlusszahl										
Low-cost	122-500	134-550	144-600	160-660	180-720	180-800				
High-performance	3000	3400	3800	4000	4400	4600				
Chip-board-Freq. [MHz]										
Low-cost	100	100	100	100	100	100				
High-performance	2500	3125	3906	4883	6103	7629				
max. JuncTemp. [°C]										
Low-cost	90	85	85	85	85	85				
High-performance	90	85	85	85	85	85				

TCM Modul 1

Quelle: www.ibm.com

TCM Modul 2

Standardprozess LTCC

Technologieablauf LTCC

M. Luniak, TUD IAVT

Technologieablauf LTCC

M. Luniak, TUD IAVT

Via Stanzen

Aufbau eines Stanzwerkzeuges: (schematisch)

- Stanzstempel
- Absteiferbuchse
- LTCC-Grünfolie
- Schnittbuchse

Stanzwerkzeug in der Praxis:

- Präzisions-Stanzwerkzeug mit Mehrfachstempelanordnung
- Substrathalterung (Saugrahmen)
- LTCC-Substrat

Automatische Stanzanlage:

- Entnahme der Folien aus Kassette
- Stanzen
- Inspektion
- Ablage in Einzeltrays

Technologieablauf LTCC

M. Luniak, TUD IAVT

Prinzip Siebdruck

- 1 Siebrahmen
- 2 Schablonenträger (Siebgewebe)
- 3 Epoxydharzkleber
- 4 Siebdruckschablone (Fotopolymer) 5 Druckbild (Struktur)
- 6 Substrat
- 7 Drucktisch
- 8 Rakel
- 9 Dickschichtpaste
- 10 Siebschleppe
- 11 Druckstruktur (Druckstrukturbild)
- A Absprung
- F Rakelanpresskraft
- v Rakelgeschwindigkeit

Quelle: Hanke "Hybridträger"

Begriffe: (vgl. auch DIN 16 610)

Technologieablauf LTCC

M. Luniak, TUD IAVT

Laminationsverfahren

Technologieablauf LTCC

M. Luniak, TUD IAVT

Einbrennprofil für 850 °C Temperaturprofil (Standard

Brennprofil LTCC z.B. DP 951

Recommended Firing Profile

Quelle: Datenblatt DP 951

Schematischer Aufbau eines Dickschichtofens

Ausbrand

Sinterschrumpf kommerzieller LTCC Materialien

Konzepte zur Unterdrückung des Sinterschrumpfes

Quelle: Rebenklau, Wolter, Hildebrandt "Zero-Shrink-Studie" TUD 2007

Vielen Dank für die Aufmerksamkeit!