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ABSTRACT 

The efficiency of hydraulic drive systems in mobile machines is influenced by several factors, like the 

operators’ guidance, weather conditions, material respectively loading properties and primarily the 

working cycle. This leads to varying operation points, which have to be performed by the drive system. 

Regarding efficiency analysis, the usage of standardized working cycles gained through measurements 

or synthetically generated is state of the art. Thereby, only a small extract of the real usage profile is 

taken into account. This contribution deals with process pattern recognition (PPR) and frequency based 

efficiency evaluation to gain more precise information and conclusion for the drive design of mobile 

machines. By the example of an 18 t mobile excavator, the recognition system using 

Hidden – Markov - Models (HMM) and the efficiency evaluation process by means of backwards 

simulation of measured operation points will be described. 

Keywords: process pattern recognition, hidden-markov-model, backward simulation, alternative 

modelling methods, efficiency evaluation 

1. INTRODUCTOIN 

Hydraulic drives have operating point-

dependent efficiency characteristics, which result 

in user-specific primary energy requirements. For 

this reason, in addition to knowing the operation 

profile of each construction machine, it is 

important to obtain information on the efficiency 

of each task performed (pattern) in order to 

incorporate this data into the development 

process or into the current operation. The energy 

efficiency of mobile machinery must therefore be 

analysed and evaluated using frequency-based 

operation point distributions, taking into account 

the range of applications of the machine. To 

achieve this goal, two major areas of work were 

carried out: 

1. The model-based efficiency evaluation of 

the drive system using frequency-based operation 

point data of parallel-operated axes on a common 

hydraulic supply. 

2. The process pattern recognition for the 

automated recording of the frequency as well as 

start and end times of the patterns. 

2. STATE OF THE ART 

Pattern Recognition 

Pattern recognition with its various mathematical 

methods and approaches is defined in its entirety 

as machine learning [1]. The different methods of 

pattern recognition always have to solve the same 

task, which follows the same sequence. This 

includes the data preprocessing (e.g. frequency 

filtering) of a data signal in the so-called analyzer 

with subsequent transfer to the characteristic 

space. These characteristics are assigned to 

classes. The classification then represents the 

different patterns, which have to be detected [2]. 

There is a large number of algorithms that must 

be selected according to the requirements of the 

recognition task. (e.g. template matching 

procedure, artificial neural networks, support 

vector machines (SVM), decision trees or the 

nearest neighbour classification, hidden markov 

models (HMM)). These algorithms are already 

successfully used in areas such as speech, gesture 



and handwriting recognition [3–6]. In the field of 

mobile machinery Wünsche showed in [7] the 

recognition of cycles on a wheel loader. With the 

help of CAN bus signals, a principal component 

analysis is carried out using a sliding window. 

Various activities are identified based on the first 

principal component. The performed 

investigations show a high sensitivity of the 

detection rate to the window size used. It remains 

open whether the main components are suitable 

as classification features for the identification of 

complex motion sequences of several loads 

operated in parallel. 

Keller describes in [8] the possibility to detect 

a loading cycle of a mini excavator. Due to the 

simplicity of the algorithm, the method of the 

decision tree is used. 16 loading cycles are carried 

out on a test machine and the existing measured 

variables are recorded. The decision tree 

algorithm is then trained with this data, which 

represents the assignment of the activity label. 

The sub-processes idling, driving, unloading, 

slewing and digging are labelled. In the 

subsequent recognition phase, he examines the 

accuracy of the calculated sequences with 20% of 

the recorded data and the influence of the 

available signals on the machine. In the result, the 

joystick signals are identified as the most 

influential signals.  

In [9] the suitability of the template matching 

procedure and HMM to define customer usage 

profiles are shown. Thereby HMM show the best 

results for the recognition of sequences of various 

lengths. This and the other listed examples show 

only the recognition of individual working 

cycles. Relevant points such as determining the 

cycle duration, the detection of different cycles, 

the learning of unknown processes and further the 

evaluation of the detected processes are not 

considered yet. This contribution deals with these 

issues. 

Efficiency evaluation 

Due to the great heterogeneity of mobile 

machinery, it is very difficult to define specific 

methods for evaluating energy efficiency. In 

addition, the machine operators have a major 

influence on the energy consumption of the 

machine (design, selected machine size, age of 

the machine) [10]. Today, however, there are 

several methods and guidelines for evaluating 

fuel consumption for different types of mobile 

machinery. Three approaches can be 

distinguished: 

1. direct fuel measurements [11–14] 

2. subsystem tests [15] 

3. model-based system analysis [10, 16–23] 

While in one measurements are possible in real 

life and based on defined cycles, the procedures 

in two and three are limited to reference cycles. 

Mieth shows that it seems most reasonable to use 

a small, representative number from the set of all 

measured cycles on the basis of the density 

distribution function for the efficiency 

evaluation. In this example, a very good 

agreement in the load distribution on the stick 

cylinder could be obtained by using only 10 

instead of all 92 measured cycles [10]. This 

underlines the necessity to use a statistically 

proven set of operation points for the efficiency 

evaluation. With regard to the traction drive of a 

mobile machine, a corresponding methodology 

has been developed in [24, 25]. Jähne sets up 

simulation models for different transmission 

structures and derives efficiency maps by varying 

the model input variables (𝑣𝑖 , 𝐹𝑖). These maps can 

easily be calculated with the frequency data of the 

operation points in order to determine a system 

input power. In general, this methodology can be 

applied to all systems with only one active load. 

As soon as several consumers are operating 

simultaneously, the dimension of the efficiency 

maps increases and with it the simulation effort 

to generate them. For the calculation of the 

system input power for given operation points of 

consumers operated in parallel other calculation 

methods have to be developed, which are part of 

this paper. The term "efficiency model" will be 

introduced to describe the resulting models. 

3. VALIDATION OBJECT 

The validation of the efficiency assessment 

methodology, including process pattern 

recognition, was carried out on an A918 mobile 

excavator from Liebherr. The machine is 

equipped with a LUDV valve system and a 

hydraulic-mechanical load-sensing concept for 

adjusting the pump. Measurement series with 16 

cycles for digging with the corresponding flux 

and potential values at the main loads boom, 

stick, bucket and swing gear were used. These are 

shown in extracts in Figure 1.  



 

Figure 1: A918 object of examination – digging cycle 

This machine and its provided data is used for the 

development and validation of the shown system 

in this contribution. 

4. PROCESS PATTERN RECOGNITION 

The Hidden Markov Models (HMM) used in this 

publication are particularly well suited for an 

application in the area of mobile machinery, as 

they can also cope with widely varying cycle 

times and, in addition, an increase in detection 

quality can be achieved through adaptation 

during operation [9]. 

HMM are stochastic calculation models, 

which have the characteristic to assign states to 

observable parameters (sensor signals). For this 

purpose, the process pattern (set of similar 

working cycles) to be determined can be 

allocated to the order of a time sequence of states, 

which can assume any number 𝑛. 

 

Figure 2: sensor signal and calculated state sequence  

Figure 2 shows this context with the calculation 

of 𝑛 = 4 states to the time sequence of four 

digging cycles represented in the rotational speed 

of the slewing gear. If the HMM calculates the 

sequence of states, a subsequent evaluation 

algorithm can determine the pattern out of the 

order of state sequence.  

Before this recognition can be performed, the 

HMM hast to be trained. Therefore, the sequence 

of states to be calculated must be assigned to the 

training data, which must be the same sensor 

signal as in the detection phase. In the training 

phase the HMM learns the allocation of the 

predefined state sequence and the sensor signal. 

A problem with this procedure is that not every 

sensor signal is suitable for a high calculation 

quality of the state sequence. It depends on the 

spread of the measured values between two 

different states, which has to be significantly 

greater than the spread yielded by the sensor 

within a state. This behavior is varying for the 

different working cycles. It leads to the first 

problem that unknown patterns, which the HMM 

does not know, could not be used for a training 

without an elaborate statement of suitability. Due 

to this a new method, called quadrant method 

(QM), of data preprocessing was introduced in 

[26]. The approach was chosen due to the 

requirement of the independence of certain 

sensor signals. The basic idea is the regard of 

every single load and its working point in the 

speed-force- respectively speed-torque-diagram 

(flux and potential values). Not the absolute 

values are examined, but only the appearance in 

the quadrant of the particular diagram of the load 

in every time step is observed. By computing the 

combination of all loads in every time step a 

sequence is achieved, which is the substructure 

both of the training and of the application of the 

HMM. In Figure 3, the combination sequence 

with 3 loads (boom, stick, bucket cylinder) of the 

16 cycles of the A918 is presented.  

 

Figure 3: combination sequence of 16 digging cycles 

The next step is the state assignment to this 

sequence before HMM training can be done. As 

well as the so far described functions, this is 

realized in Matlab® by an algorithm in the 

following named autostate function. The 

functionality aims to the possibility of an 

automatic state assignment for new patterns, 
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which are unknown. Especially for an online 

implementation this is necessary. The approach 

that is chosen is known from handwriting 

recognition. Here, stair-like state progressions are 

used for observation sequences of different 

lengths, which are represented by different 

symbols, letters and operators. The idea is now to 

assign a staircase to a process pattern and use it 

for the training of the HMM. The number of 

states is freely selectable and influences the 

configuration of the HMM regarding fluctuating 

detection rates.  

 

Figure 4: autostate assignment for one cycle 

Counting of patterns 

The counting of the patterns consists of the 

determination of start and end times and the 

calculated duration. This also results in the 

number of occurring patterns. For this purpose, 

the state sequence with 20 states shown in 

Figure 4 is used (one cycle). The advantage is the 

possibility of counting the sequences calculated 

by the HMM afterwards in the recognition phase, 

which in the best case can be computed exactly 

as a staircase sequence. Figure 5 shows this 

approach exemplarily for four states. The 

counting event is triggered when all states have 

been passed through one after the other and the 

stack is filled. This method makes it very easy to 

determine the times and thus the durations of each 

pattern, since both the start time with the 

beginning of the stack filling and the end time 

with the filled stack are available. 

 

Figure 5: principle of the memory stack 

Operation point storage 

Since QM already uses the flux and potential 

values of each load, the operation points are 

known at the time the pattern occurs. However, 

due to the storage requirements, the operation 

point storage has a high significance. For the 

transfer of the time-based continuous data stream 

into the frequency distributions required for the 

efficiency evaluation, the storage of the operation 

points using multidimensional classification with 

dynamically growing list is applied. With this 

method only operation points that actually occur 

are stored for every pattern. This must be done 

during online recognition parallel to the actual 

recognition. The model must detect the beginning 

of a pattern and fill the dynamic list during 

recognition. After the recognition and thus the 

assignment to a pattern, the newly occurring 

operation point combinations extend the list of 

this pattern. 

Evaluation 

The model is designed so that it can be used both 

online and offline as a data evaluation tool. The 

current state of development is the possibility of 

recognizing an automatically trained pattern and 

the saving of the operation points with their start 

and end times for the efficiency evaluation. In a 

reduced offline version, the recognition of 

different trained and unknown patterns is 

possible. However, in this model the start and end 

times can only be determined with insufficient 

accuracy. For this reason, this publication uses 

the online model that is implemented in Simulink. 

Figure 6 shows the recognition result of 16 

digging cycles of the Liebherr A918 with 64 

trained states. The recognition rate is 93 % 

because 15 of the 16 cycles were detected by the 

HMM. The red line is the calculated state 

sequence, were the stairway of the trained 

sequence is identifiable. The last cycle is not 

detected, because no following cycle let the 

HMM calculate a state which indicates the end of 

this sequence and the start of the new one.  1
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Figure 6: detection result of Liebherr A918 data 

The interesting thing is the result shown in 

Figure 7, where the detection result of the 

excavator CASE WX 185 data is presented. This 

data contains 8 cycles of digging and 8 cycles of 

levelling. The HMM which was used for the 

detection is the same like in the first example. 

Due to the usage of the QM method, which uses 

the separate loads of the machine at least 5 of the 

8 included cycles are detected (2, 3, 5, 6, 7). 

Cycle 1 & 4 are detected, but with wrong cycles 

times. The last cycle detected (8) is a wrong 

detection. The levelling cycles weren’t 

determined.  

 

Figure 7: detection result of Case WX 185 data 

The stairway is not as well calculated as in 

Figure 6 but nevertheless the individual cycles 

can be identified and detected by the HMM. This 

is caused by the completely different general 

conditions, which are a different machine, 

another operator, a varying time and a differing 

load. 

This model was implemented on a control unit 

(STW ESX-3XM) and is used in a hardware-in-

the-loop test bench and on the excavator. As the 

excavator A918 was not available for validation 

purposes, the excavator CASE WX 185 and a 

corresponding real-time capable model were 

used. Since QM can be used, as shown before, 

across all machines, the application can also be 

carried out on multiple machines. With that 

online application the shown detection results can 

be achieved in real time and the operation points 

and the duration of every single cycle are saved 

in matrix and are available for the efficiency 

evaluation described in the following chapter. 

5. EFFICIENCY EVALUATION 

An important prerequisite for efficiency analysis 

is the choice of the system boundary. For the 

investigations in this publication the mechanical 

power of the actuators (cylinders, motors) 

represents the one system boundary. A 

measurement of cylinder or motor pressures can 

be easily realized in practice. These should be 

used to calculate the occurring cylinder force / 

motor torque. Sensors in the course of automation 

on the machines partly already record the speeds 

and revolutions of the output drives. If this is 

technically more difficult, as for example with 

bucket cylinders on excavators, it is assumed that 

estimated values from the measured joystick 

deflection are available. For a practicable 

efficiency model, the other system boundary 

should be designed flexibly depending on the 

available data for modelling or measurement and 

should be located between fuel consumption at 

the engine, mechanical shaft power of the engine 

and hydraulic power of the pump(s). In principle, 

it is also conceivable to equip the machine with 

maximum sensor technology and to make simple 

monitoring possible over the period of use. 

However, this can only provide information 

depending on the currently installed system. The 

following is possible by measuring the 

mechanical output power and converting it via a 

model of the drive system (efficiency model) to 

the required input power and other intermediate 

variables: 

1. calculation of the necessary input power 

depending on the selected system boundary 

2. analysis of the loss points in the system 

3. assistance in the engineering process to find 

the energetically optimal drive structure for 

certain tasks. 



The special feature compared to the classical 

simulation is the backward calculation of the state 

variables in the system based on the measured 

operation points. Whereas in the classical system 

simulation, for example, the motor speed, pump 

swivel angle and deflection of the valve spools 

are pre-set, whereupon the speeds of the axes are 

adjusted according to the acting loads, these 

variables must now be calculated based on the 

pre-set forces and speeds. The principle of the 

efficiency model is displayed in Figure 9. 

For practicability, the efficiency model should 

obtain the static loss behaviour of the system, be 

easily parameterisable and calculate the solution 

within seconds.  

5.1. System description 

The load sensing system with secondary pressure 

compensators is a widespread hydraulic system 

for mobile excavators on the European market. 

The test object mobile excavator used here also 

contains this drive system. In detail, it contains of 

a hydraulic-mechanically controlled load-sensing 

pump connected to a diesel engine, a LUDV 

valve block, pipe breakage safety valves and 

hydraulic-mechanically Joysticks. According to 

the 90°-digging cycle, the main consumers boom, 

stick, bucket and slew drive, which are all valve-

controlled on a single pump are taken into 

account. Because the backwards calculation of 

the hydraulic pressure at the pump is the biggest 

problem, this is the focus in the following. A 

simplified hydraulic circuit diagram of an 

exemplary chosen two consumer LUDV-system 

is displayed in Figure 8. 

 

Figure 8: simplified hydraulic circuit diagram of a 

LUDV system 

It can be divided into five sections with the 

following stationary element equations: 

1. Metering orifices (MO) 

𝑄𝑖,𝑀𝑂 = 𝐾𝑖,𝑀𝑂 ∙ 𝐴𝑖,𝑀𝑂(𝑦𝑖) ∙ √𝑝𝑝 − 𝑝𝑖,1 (1) 

2. Individual pressure compensators (IPC) 

𝑄𝑖,𝐼𝑃𝐶 = 𝐾𝐼𝑃𝐶 ∙ 𝐴𝐼𝑃𝐶(𝑦𝑖,𝐼𝑃𝐶) ∙ √𝑝𝑖,1 − 𝑝𝑖,2 (2) 

 𝑦𝑖,𝐼𝑃𝐶 =
𝐴𝑖,𝐼𝑃𝐶

𝑐𝑖,𝐼𝑃𝐶
∙ (𝑝𝑖,1 −max (𝑝𝑖,2)) (3) 

3. Direction edges (DE) 

𝑄𝑖,𝐷𝐸_𝑢𝑝 = 𝐾𝐷𝐸_𝑢𝑝 ∙ 𝐴𝐷𝐸_𝑢𝑝(𝑦𝑖)

∙ √𝑝𝑖,2 − 𝑝𝑖,𝐴/𝐵 
(4) 

 𝑄𝑖,𝐷𝐸_𝑑𝑜𝑤𝑛 = 𝐾𝐷𝐸_𝑑𝑜𝑤𝑛 ∙ 𝐴𝐷𝐸_𝑑𝑜𝑤𝑛(𝑦𝑖) ∙

√𝑝𝑖,2 − 𝑝𝑖,𝐴/𝐵 
(5) 

4. Actuators indexed with ascending 

alphanumeric numbers 

p1,A p1,B p2,Bp2,A
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Figure 9: concept of efficiency modelling 

Systems loss description

1. Efficiency maps

2. Analytical description
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𝐹𝑖,𝑧𝑦𝑙 = 𝑝𝑖,𝐴 ∙ 𝐴𝑖,𝐴 − 𝑝𝑖,𝐵 ∙ 𝐴𝑖,𝐵 (6) 

 𝑣𝑖 =
𝑄𝑖,𝐴

𝐴𝑖,𝐴
=
𝑄𝑖,𝐵

𝐴𝑖,𝐵
 (7) 

5. Suction valves (SV)  

𝑄𝑖,𝑆𝑉 = 𝐾𝑆𝑉 ∙ 𝐴𝑆𝑉 ∙ √𝑝𝑇 − 𝑝𝑖,𝐴/𝐵 (8) 

Besides this, the following balance equations are 

valid: 

6.  

𝐹𝑖 = 𝐹𝑖,𝑐𝑦𝑙 (9) 

 𝑄𝑖,𝐴/𝐵 = 𝑄𝑖,𝐷𝐸_𝑢𝑝 + 𝑄𝑆𝑉 (10) 

 𝑄𝑖,𝐵/𝐴 = 𝑄𝑖,𝐷𝐸_𝑑𝑜𝑤𝑛 + 𝑄𝑆𝑉  (11) 

 𝑄𝑖,𝐷𝐸_𝑢𝑝 = 𝑄𝑖,𝐼𝑃𝐶  (12) 

 𝑄𝑖,𝐼𝑃𝐶 = 𝑄𝑖,𝑀𝑂  (13) 

 𝑄𝑝 = ∑𝑄𝑖,𝑀𝑂  (14) 

 𝑝𝑝 =     (𝑝𝑖,2) + ∆𝑝𝐿𝑆  (15) 

Thereby, the cylinder chamber pressure 𝑝𝑖,𝐴/𝐵 , 

the intermediate pressures 𝑝𝑖,1/2, the valve stroke 

𝑦𝑖, the IPC stroke 𝑦𝑖,𝐼𝑃𝐶 and the pump pressure 

𝑝𝑝 are unknwokn. 

It becomes obvious that the system of 

equations is solvable in principle, since 

determinacy exists (seven equations and seven 

unknown variables). Due to the discontinuities 

(opening of suction valves, maximum load 

pressure in eq. (3)), the non-linearity’s (root 

function in flow equations and 𝐴(𝑦) 
characteristic of the control edges), a direct 

inversion of the input and output variables is 

impossible. 

To overcome this issue, three different variants of 

efficiency models were developed, named as: 

1. Serial Iteration 

2. Parallel Iteration 

3. Blackbox Model 

The methods one and two belong to the category 

of light-grey box models, as they are based on the 

static system equations and contain characteristic 

curves of the valves. Both methods use the 

equations described above. The serial iteration 

uses the bisection method for iterative solutions. 

With the "parallel iteration" model, the approach 

is to use existing "classical forward models" and 

vary the potential quantities until all balance 

equations are approximately zero. For this 

purpose, a multidimensional Newton iteration 

method is applied. The disadvantage of this 

method is that the solution of the Newton method 

depends strongly on the starting value of the 

iteration. This is contrasted by the method of 

black box modelling. The idea here is to train the 

relationship between the operating points at the 

consumers and at the pump based on measured 

data or an already existing complex system 

simulation models. This model can then be used 

to quickly simulate further operation points. 

However, physical parameterisation is not 

necessary. The three methods were implemented 



in Matlab® and then compared with the 

measured operation points of the pump. 

In [27] it could be shown that the black box model 

requires the least computing time and achieves 

the highest accuracy. However, the accuracy 

decreases strongly with measurement data 

deviating strongly from the training data set and 

an interpretability due to missing physical 

correlations is not given. When comparing the 

two iterative methods with each other, serial 

iteration is preferable because of its better 

accuracy and higher speed. However, parallel 

iteration is much easier to model and thus to 

apply, as it is possible to derive the efficiency 

model from existing classical models. However, 

the computing times are unacceptably high. 

Detailed description of serial iteration model 

The diagram in Figure 10 shows the basic 

procedure of the developed program. In principle, 

this is divided into two calculation phases. In the 

first part the pump pressure is calculated. To 

determine the valve stroke, it is assumed that the 

set LS pressure, which drops across the pressure 

compensator and the metering orifice, is constant. 

The volume flow required for the movement, 

which must be conveyed by the pump, results 

from the product of the cylinder area and cylinder 

speed. From the pressure and the volume flow it 

is possible to determine the valve stroke. Since 

the pressure compensator and the main valve are 

not mechanically coupled, the pressure 

compensator must be balanced hydraulically as 

well as mechanically. With the so determined 

valve stroke it is now possible to calculate all 

other variables backwards from the tank and to 

get a statement about the required pump pressure 

for each consumer. The highest determined pump 

pressure represents the pump pressure that is set. 

In the second part of the program, the volume 

flows, pressures and valve strokes of the lower-

load consumers are calculated. Here, the valve 

stroke is varied until the speed of the cylinder at 

a given pump pressure almost corresponds to the 

measured value. For this purpose the static 

control law is used according to the following 

equation:  

 

 

Figure 10: schematic of the developed program for the “serial iteration” efficiency model 
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5.2. Special Modelling aspects 

Control edge geometry 

The mapping of the opening cross section as a 

function of the valve stroke 𝐴(𝑦) plays a central 

role, especially in the field of mobile machinery, 

since the valves are designed for the operator-

guided process and thus include both a fine 

control range and a range of high speeds in 

combination with a positive overlap. In addition, 

the control edges have different characteristics to 

intercept conditions such as pulling loads. For the 

modelling it has turned out to be advantageous to 

ignore the positive overlap range at first, i.e. not 

to calculate system states. This is realized by 

simple IF-THEN-ELSE queries. Furthermore, it 

is advantageous to carry out a normalization from 

zero to one. The volume flow amplification 𝐾𝑖 of 

the individual control edges contains, on the one 

hand, the flow coefficient 𝛼, which is an 

empirical value to take into account all losses 

such as fluid friction or turbulence. This factor 

depends mainly on the Reynolds number and the 

geometry of the control edges. Realistic values 

for valves are in the range between 0.6 and 0.8, 

whereby a good approximate value of 0.7 can be 

assumed. On the other hand 𝐾𝑖 contains the 

density, which is assumed to be 

𝜌 =  880 𝑘𝑔 /  3. 

Input pressure compensator 

This is relatively simply implemented by an IF-

THEN-ELSE query. A fixed volume flow rate 

value is calculated at the set LS pressure 

differential if no consumers are moved. 

Secondary pressure limitation 

The secondary pressure relief valves are coupled 

to the control signal of the valves. They limit the 

load pressure 𝑝𝐿 when the valve is closed to a 

fixed set value 𝑝𝑐𝑙𝑜𝑠𝑒𝑑. When the valve is fully 

open, the maximum load pressure 𝑝    is set. 

Mathematically, the relationship can be described 

according to the following equation:  

𝑝𝐿 = (𝑝   − 𝑝𝑐𝑙𝑜𝑠𝑒𝑑) ∙
𝑦

𝑦   
+ 𝑝𝑐𝑙𝑜𝑠𝑒𝑑 (17) 

Regeneration position in the main valves 

Some of the valve systems installed today already 

feature section-internal regeneration between the 

cylinder chambers due to improved energy 

efficiency of the machine. This is particularly the 

case with the boom and stick. However, this 

poses a major challenge for backward calculation 

with the efficiency model, as there is no longer a 

direct correlation between cylinder speed and 

volume flow over the directional edges. The 

system is therefore under-determined and cannot 

be calculated. There are two possibilities to solve 

this problem: 

1. assumption of a fixed volume flow 

distribution 

2. measuring another system parameter and 

feeding it back into the efficiency model 

Solution 1 is to be preferred, since measuring 

another variable within the system does not 

correspond to the philosophy of the efficiency 

model as described above. However, in the case 

under investigation this could only be applied to 

the boom cylinder. For the stick cylinder, the 

measurement of the pressure in the node of the 

volume flow distribution had to be resorted to. 

𝑣𝑐𝑦𝑙 =
𝐴𝑃 ∙ 𝑝𝑝 − 𝐴𝑇 ∙ 𝑝𝑇 − 𝐹𝑐𝑦𝑙

𝐴𝑃
3 ∙ (

1

𝐾𝑀𝑂
2 ∙ 𝑦2

+
1

𝐾𝐷𝐸_𝑢𝑝
2 ∙ 𝑦2

+
1

𝐾𝐼𝑃𝐶
2 ∙ 𝑦𝐼𝑃𝐶

2
) + 𝐴𝑇

3 ∙ (
1

𝐾𝐷𝐸_𝑑𝑜𝑤𝑛
2 ∙ 𝑦2

)

 
(16) 

 



5.3. Results on demonstrator 

The results of the efficiency model for the test 

object are shown in Figure 11. The accuracy of 

2 % of the overall normalized energy 

consumption of the duty cycle shows that the 

efficiency model can be used for further 

investigations. The computing time of 182 s for 

35.761 operation points (=357 s duration) is 

acceptable and meets the requirement "within a 

few seconds". A transferability to other systems, 

especially open-center systems with many 

volume flow distributions, seems impracticable 

from the authors' point of view. For this purpose, 

other methods such as real-time capable, classical 

forward models or direct energy monitoring with 

a few model-based components are proposed. 

6. CONCLUSION AND OUTLOOK 

This paper shows a new method that allows the 

analysis and evaluation of energy efficiency of 

mobile machinery by means of frequency-based 

operation point distributions. First, the occurring 

duty cycles and the frequency of their occurrence 

are detected by the process pattern recognition 

(PPR). The duration of the cycles and the 

operation points contained therein are stored. 

These are subsequently used to calculate 

backwards the input power of the drive system 

through the efficiency model. The two 

subsystems PPR and efficiency evaluation are 

combined in one overall system, which makes it 

possible to achieve a better understanding of the 

use of machines and the resulting loads on the 

drive system with minimal effort. It can be 

assumed that the automated collection and 

processing of the application data is a continuous 

process which will not be limited to a single 

machine development project. The creation of a 

statistically secured database with a 

corresponding scope thus serves to build up the 

basic knowledge for the conception and design of 

future machine generations or their components 

and subsystems. 
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Figure 11: Results of “serial Iteration” efficiency model for typical duty cycles of mobile excavator 
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