

Cultivation of Sunflower suspension cultures in shaking flasks with an online monitoring system

Katja Geipel, Christiane Haas, Juliane Steingroewer, Thomas Bley

Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069 Dresden, Germany

Introduction:

- § Monitoring of biological activity in shaking flasks insufficient
- à time-consuming, dangerous for sterility, delay between real status & measured state
- § Accurate monitoring & realistic scale up hindered à consequences: growth limitations, premature interruption before reaching growth maximum
- § Application of miniaturized parallel cultivation systems with online sensor technology (Fig. 1 and 7) for microorganisms

the Auxin 2,4-Dichlorphenoxyacetic acid (2,4-D)

Plant cells in contrast to microorganisms:

Callus (Fig. 3): undifferentiated plant cells via impact of plant growth regulators like

Plant suspension culture: callus suspended & cultivated in liquid media (Fig. 4)

§ 26°C, 110 rpm, dark, sunflower suspension cultur, inoculum 20% (v/v) [3]

§ Growth rate low à high risk for contamination, long term experiments

§ Linsmaier & Skoog media à variation of 2,4-D concentration: 0,1 & 0,2 mg/L RAMOS: measurement of difference & O2 partial pressure in each flask [1] à RQ

à utilization for cultivation of plant cells just marginally reviewed

Cultivation parameter for further exp.:

Materials and Methods:

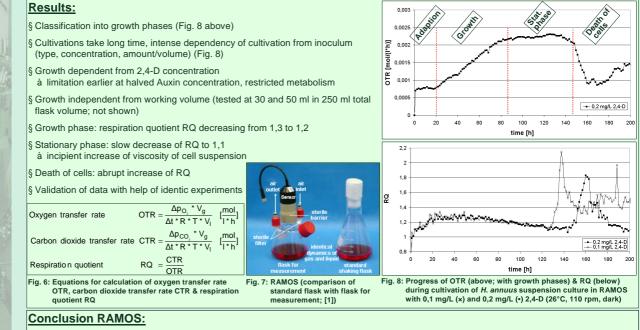
Fig. 1: RAMOS (board with Fig. 2: Helianthus flasks for reference & measurement)



annuus

sunflower

- § Screening suspensions of sunflower (H. annuus, Fig. 2) concerning media & cell line optimization in the parallel cultivation system RAMOS [1] (Respiration Activity MOnitoring System, Fig. 1 and 7)
- § Transfer of plant in vitro cultures into RAMOS: handling, setup & interpretation of data
- § Optimized synthesis of plant secondary metabolite α-Tocopherol (vitamin E, Fig. 5) for industrial applications e.g. in cosmetic industry & pharmacy [2, 4]


Fig. 4: Suspension of sunflower, stained with FDA (fluor. microscopy, vital cells are green)

§ Sensitivity of plant in vitro cultures in terms of growth & metabolite synthesis high § Increase of viscosity during stationary phase heavy à risk of limitations (O2 and other nutrients) structure [4] § Agglomeration of plant cells in suspension intense à difficult handling e.g. for reproducible inoculation & single cell analysis

Fig. 3: Callus of Helianthus annuus,

approx. 2 weeks old

§ Advantages: marginal amount of work, easy handling in comparison to standard miniaturised cultivation strategies, optimisation and scale up

§ Disadvantage: complex establishment of plant suspension cultures in RAMOS and development of setup

§ Outlook: transformation experiments with callus and suspension cultures of sunflower with genetically modified Agrobacterium tumefaciens à additional increase of α -Tocopherol yield

References:

[1]

- Anderlei, Büchs: Device for sterile online measurement of the oxygen transfer rate in shaking flasks, Biochem. Eng. J. 7. 157-162, 2001. Pavlov, Werner, Ilieva, Bley: Characteristics of *Helianthus annuus* Plant Cell Culture as a Producer of Immunologically Active Exopolysaccharides, Eng. Life Sci. 5. No. 3, 2005. Haas, Weber, Ludwig-Müller, Deponte, Bley, Georgiev: Flow Cytometry and Phytochemical Analysis of a Sunflower Cell Suspension Culture in a 5-L Bioreactor, Naturfrosch [3] 63c. 699-705, 2008
- [4] Dörmann, Peter (2007): Functional diversity of tocochromanols on plants. Planta 225: 269-276.

Contact: Dipl.-Ing. Katja Geipel Phone: +49 351 463 39042 Katja.Geipel@TU-Dresden.de

Funded by the European Social Funds and the Freestate of Saxony, Project number 080938406 Project period 10/01/2009 - 09/30/2012

