

Chair of Bioprocess Engineering

Engineering of synthetic C4 pathway for using ethylene glycol

Linxuan Wen

Contact:

<u>Linxuan.wen@tu-dresden.de</u> +49 (0)351 463 32727

Motivation

Ethylene glycol as promising alternative substrates for microbial conversion

Synthetic pathway for the carbonconserving conversion of EG into DHB

Engineering of synthetic C4 pathway for using ethylene glycol Chair of bioprocess engineering / Linxuan Wen Dresden, 25.04.2022

Folie 2

Applied techniques

Engineering of synthetic C4 pathway for using ethylene glycol Chair of bioprocess engineering / Linxuan Wen Dresden, 25.04.2022

Advances in this project

Enzyme level:

- Enzymes for all metabolic steps are available.
- Assimilation of EG into DHB through the assembled metabolic pathway was demonstrated in vivo.
- Two rate-limiting steps with:
 - > (D)-threose aldolase
 - (D)-threose dehydrogenase

Microorganism level:

• The objective is to transfer the engineered metabolic pathway into *Pseudomonas*. *putida*

Advances in this project

Enzyme engineering

Molecular biology including cloning/plasmid construction, targeted and random mutagenesis, enzymatic assays, development of high throughput enzymatic assays

Strain engineering

Metabolic engineering of P. putida

Topics are suitable for Internships, Bachelor/Master/Diploma-projects

Engineering of synthetic C4 pathway for using ethylene glycol Chair of bioprocess engineering / Linxuan Wen Dresden, 25.04.2022

