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Abstract

Results from two Direct Numerical Simulations of a round jet in crossflow
with velocity ratio of 3.3 are presented. The Reynolds number was 650 and
325. A passive scalar with Schmidt number of unity is introduced with the
jet. The boundary conditions for both, jet and crossflow are laminar. This
provides an unambiguous definition of the setup and favours its use as a
test case. Transition of the jet was identified by an abrupt expansion of the
average scalar field. The higher Reynolds number leads to a transition at
3.49 diameters downstream of the jet exit, the lower one - at 4.41 diameters.
The higher Reynolds number flow exhibits smaller turbulent structures, but
despite this and the different location of the transition, the trajectories of the
two flows are close to each other.

The computational technique employed is a block-structured Finite-Volume
method with local grid refinement at block boundaries implemented in the
code LESOCC2. This allowed efficient distribution of cells so that 89% of
them could be clustered in the vicinity of the jet exit and in the transition
region. Issues of parallelization and efficiency are addressed in the text.

1 Introduction

The configuration of a jet issuing from a pipe into a crossflow (JICF) appears
frequently in chemical, pharmaceutical, environmental and combustion engi-
neering, to name but a few application areas. The complex vortical structures
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of this flow and its good mixing capabilities make it a target of intense in-
vestigation for both experimental and numerical groups [7]. Previous work
of the authors showed results from a Direct Numerical Simulations (DNS)
of the jet in crossflow at Reynolds number Re = 275 (defined with the jet-
diameter D and the crossflow velocity u∞ ) and jet-to-crossflow velocity ratio
R = wjet/u∞ = 2.4.

In the present study the results from two recent Direct Numerical Simula-
tions (DNS) with velocity ratio R = 3.3 and Reynolds numbers Re = 650 and
Re = 325 are compared. The influence of the Reynolds number on the vortex
structures of the flow and its jet trajectory is presented in detail. As the jet
in crossflow has a relatively complex structure, it is not trivial to generate a
block-structured grid which is well-suited for this flow. As the efficient use of
computer resources is specially important for studies with DNS, the present
work focuses also on this issue.

2 Flow configuration

The flow configuration of a round transverse jet into a crossflow has been
presented in detail in a previous work of the authors [1]. For brevity only the
main parameters will be discussed here.

The pipe flow, from which the jet issues is laminar, as well as the cross-
flow. The laminar flow conditions allow to keep the boundary conditions of
the investigation simple and unique (in contrast to, e.g. turbulence flow gen-
erators). However, during the interaction of the two streams transition to
turbulence occurs and one of the targets of the present work is to investigate
the characteristics of this transition and to establish its dependence on the
Reynolds number in the range being studied. As the equations solved are in
a non-dimensional form (with the jet diameter D and the crossflow velocity
u∞ set to unity in the computations), the Reynolds number is set directly as
an input parameter for the computations.

In order to allow the simultaneous study of the mixing process and of chem-
ical reactions in the configuration of the jet in crossflow, transport equations
for passive and reactive scalars have been solved additionally to the incom-
pressible Navier-Stokes equations. These equations govern the transport of
non-reactive scalars and for them the Schmidt number has been varied and
also the transport of reactive scalars in three simple chemical reactions and
for them the influence of the Damkoehler number has been studied. Although
according to the targets of the present investigation results only from one
scalar transport equation are shown, the presence of a large set of partial dif-
ferential equations for the remaining scalars should be beard in mind because
it affects seriously the required computer resources for the investigation.
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3 Numerical method

The simulation has been carried out with the collocated block-structured Fi-
nite Volume Code LESOCC2, developed at the Institute for Hydromechanics
(IfH) of the University of Karlsruhe [5]. Second-order accurate schemes have
been used for spatial discretization. The flow is treated as incompressible and
a Poisson equation is solved for the pressure-correction equation.

No-slip boundary conditions have been applied at the walls of the channel
crossflow with a boundary layer with a size larger than one pipe diameter.
The simulated length of the pipe generating the jet is two diameters which has
been found to be sufficient according to literature data and own preliminary
simulations.

Fig. 1. The refined region of the grid in the midplane (y = 0), shown within the
white boundaries. The local grid refinement factor is 3 : 1 for all spatial directions
of the numerical blocks near the jet-exit. The direction of the jet is upwards along
the z-axes, the crossflow is along the x-axes (from left to right)

4 Local grid refinement for optimum distribution of grid

nodes

The present investigation uses a block-structured curvilinear grid. Structured
numerical grids have the drawback that finely resolved regions inevitably re-
quire fine mesh resolution throughout the whole computational domain. This
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can lead to an unnecessary increase of the total number of control volumes. To
overcome this drawback, the present study uses the local grid refinement tech-
nique, recently implemented in the code LESOCC2 [5]. The implementation
allows two neighbour blocks to have a different number of control volumes at
the two sides of their common boundary, see Fig. 1. Using this feature, the
region near the jet exit is covered by small control volumes - in the present
study 89% of the total number of control volumes are located there. The factor
of refinement used is 3 : 1 for in all spatial directions.

Fig. 2. Histogram: distribution of the number of control volumes for the 219 blocks

5 Parallel efficiency of the computations

The computations use a grid with 219 numerical blocks. At each Runge-Kutta
step the computed variables are exchanged over the block boundaries. The
algorithm requires that at each side of the block boundary two rows of addi-
tional halo cells are positioned. Those cells store the information for exchange
by MPI (Message Passing Interface). Consequently, in a three-dimensional
computation the percentage of halo cells can become large. For the present
investigation the amount of the halo cells is 4 342 976, or 24% of the control
volumes: this is the difference between the total number of computational
nodes (22 320 832) and the number of control volumes (17 977 856).

The gridding process and the local grid refinement of the blocks near the
jet outlet (Fig.1) lead to a disparity in the amount of control volumes per
block. The histogram in Fig.2 shows the number of blocks for a certain range
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of control volumes. A large number of small blocks exist, together with an
increased number of large blocks.

The maximum number of processors to be used is generally limited by the
size of the largest numerical block. For the present investigation the largest
block (which has to be computed on a single processor) has 606 528 control
volumes and there are 8 blocks of that size (cf. Fig. 2).

Fig. 3 shows the load balancing efficiency of the computations as a function
of the number of processors for the present investigation. The graph is based
on the statistics reported by the LESOCC2 code - after an optimization tool
has been used for the distribution of the blocks over the processors. The
load balancing efficiency does not take into account the computer hardware,
but rather is a measure for the best achievable parallel efficiency. However,
for the use of 31 processors, e.g., this information fully complies with the
performance statistics of the HP XC4000 - both give 91% efficiency (i.e. 91%
user time and 9% communication time). From the graph it is seen that the use
of 31-32 processors presents an optimum for the present problem grid. Using
more than 36 processors would decrease the parallel efficiency considerably,
because of the restriction connected with the largest block size as mentioned
above.
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Fig. 3. Load balance efficiency for the present problem as a function of the number
of processors

In order to increase the number of processors, a new blocking structure
with more blocks and less control volumes per block would be required. This
in turn would increase the number of halo cells and the communication time
for MPI, thus decreasing the parallel efficiency of the computations. Some
restrictions on the increase of processor number and control volume number
currently apply due to the use of a commercial grid generator - ANSYS ICEM
CFD which was employed in this project.
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Fig. 4. Vortex structures of the jet in crossflow, simulation with Re = 650.
a) scalar concentration, c1 = 0.18; b) the Q-criterion, Q = 1.0; c) pressure fluc-
tuation, p − 〈p〉 = −0.1; d) pressure fluctuation in the plane, y = 0; e) average
scalar concentration, 〈c1〉 = 0.24; f) 2D (white lines) and 3D ,(ribbons coloured by
the concentration of the scalar) streamlines. The plane z = 0.1 is coloured by the
z-vorticity.
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6 Other numerical statistics from the computations

The computations have been carried out on the new HP XC4000 high per-
formance computer at the Computer Centre of the University of Karlsruhe
(TH). Thirty one processors (AMD Opteron, 2.6 GHz) have been used for
the computations. In order to accumulate the required statistical data for
the averaged variables, 105.7 dimensionless time units have been calculated
(time units are based on the diameter of the jet-pipe and the velocity of the
crossflow).

For the computations of these statistics the CPU-time (sum over all pro-
cessors) was 35 708 hours for the run with Re = 650 (less than 2 months
clock-time and practically no queuing time!). The lower Reynolds number
case (Re = 325) required about 13.5% more CPU-time. This is due to the
smaller time-step which is computed by the code based on stability criteria.

The CPU-time required per grid node and per time-step is 5.3E-05. This
is based on the computation of the incompressible Navier-Stokes equations
together with 3 equations for non-reacting passive scalars and 6 equations
for reacting (but also passive in relation to the velocity field) scalars. The
computation of all 9 scalar equations takes more than 2/3 of the CPU-time
of the entire computation.

No restrictions connected with the RAM of the HP XC4000 have been
noticed during the computations (required RAM per processor was 4Gb, the
computations use practically below 25% of this).

Finally, during the test stage of the HP XC4000 its performance (still
with the single rate (SDR) of the Infiniband 4X DDR interconnect) have been
compared to the performance of HP XC6000. For the present computations
the performance of the two machines has been practically identical. Also the
comparison between the three FORTRAN 90 compilers available on the HP
XC4000 (Intel, PGI and PathScale) showed the same performance (differences
found were less than 1%).

7 Flow structures at Reynolds number 650

The jet in crossflow exhibits complex vortex structures, which have been the
subject of research by many authors, e.g. ([3], [4], [6], [8]). Different variables
are used here to allow a clear presentation of the corresponding vortices for the
case with Re = 650 in Fig. 4. Figure 4a shows the instantaneous concentration
field of scalar c1 issuing from the pipe. The position of the transition as well
as the formation of the first two ring-like vortices (the first one being in the
zone prior to transition) is well identified on the figure.

Fig. 4b shows an isosurface of the Q-criterion [2]. Additional to the tran-
sition region, a clear picture of the upright vortices formed in the wake of
the jet is obtained. In the boundary layer near the bottom wall two vortices
directed downstream the crossflow are also observed.
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Large vortices are characterized by regions of pressure minima. Fig. 4c
shows the isosurface of the pressure fluctuation. The pressure fluctuation is
defined as the averaged pressure, 〈p〉, subtracted from the instantaneous pres-
sure, p, thus showing the locations of pressure minima. Three ring-like vortices
are seen in the figure, with the third one being downstream of the transition
region. Figure 4d shows the same variable (p− 〈p〉) in the plane of symmetry
y = 0 (the symmetry applies only to the averaged flow field!). Beside the
two pressure minima, which coincide with the ring-like vortices in Fig. 4c, the
locations of the upright vortices behind the jet are clearly seen (c.f. Fig. 4b).

All variables shown in Figures 4a, 4b, 4c and 4d were extracted for the
same instant in time. They all show the clear presence of small-scale turbulent
structures behind the region of transition together with the disorder and ir-
regularity of the vortex structures typical for turbulent flows. The fifth figure
(4e), unlike the previous four, shows an averaged isosurface of the scalar con-
centration together with some three-dimensional streamlines of the averaged
velocity field. It allows the identification of the counter-rotating vortex pair
(CVP) which is the most typical vortex structure of the jet in crossflow. In
this Figure the jet is oriented towards the observer and the streamlines show
the strong upward flow between the two vortices of the CVP. This upward
flow contributes to the increased mixing capabilities of the transverse jet com-
pared to a straight jet without crossflow. In the figure, the two downstream
oriented vortices from Fig. 4b (close to the bottom wall) are visualized by two
streamlines.

Finally, Fig. 4f shows some two- and three-dimensional streamlines of the
averaged flow field from which again the complex vortex structure of the jet
in crossflow can be deduced. The four ”ribbons” originate from the pipe (po-
sitioned symmetrically close to the pipe walls at z=0). Two of them, starting
from the ”side” of the jet (coordinates of their origins being (0.;0.45;0.) and
(0.;-0.45;0.)) are twisted by the vortices at the rear side of the jet and then
taken upwards from the same upward flow shown in Fig. 4e. The vortices at
the rear side of the jet are also seen on the 2d streamlines drawn in a horizon-
tal plane at z = 0.1. The same plane is coloured by the vorticity component
in direction of the z-axes, showing again the upright vortices from Figs. 4b
and 4d.

8 The influence of the Reynolds number

In Fig. 5 the corresponding vortex structures for the case with two times
lower Reynolds number (Re = 325) are presented and compared to the flow
with Re = 650 (the dimensionless time of the accumulated statistics for this
computation is 50). On this figure the same levels of the isosurfaces as in
Fig. 4 are presented. Basically two important features can be seen from the
comparison of the two figures. First, as it should be expected, the transition
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Fig. 5. Vortex structures for the case with Re = 325 and the central streamline
(averaged velocity field) for the two DNS.
a) scalar concentration, c1 = 0.18; b) the Q-criterion, Q = 1.0; c) pressure fluctua-
tion, p − 〈p〉 = −0.1; d) the central streamlines (0.;0.;0.) at y = 0.

region for the jet at Re = 325 is further downstream than that for Re = 650.
Second, all the turbulent structures are clearly larger than the corresponding
structures for Re = 650. Despite this, Fig. 5a,b,c shows that even in the case
with Re = 325 the flow downstream of the transition region is irregular and
turbulent.

Fig. 5d shows the influence of the Reynolds number on the two-dimensional
streamline originating from the origin of the jet (coordinates (0.;0.;0.)). This
definition of the jet streamline which sometimes also is called ”streamline
trajectory” ([9]) is computed from the averaged flowfield. The figure shows
that the trajectory for the case Re = 325 is a bit lower than at Re = 650
and also that there is only little impact of the Reynolds number on the shape
of the streamline trajectory. Here it should be noticed that the shape of the
boundary layer at the channel walls has been exactly the same for the two
flows studied in order to exclude the influence of all other parameters except
the Reynolds number.
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Fig. 6. Location of the transition point - visualized by the scalar concentration.
a) Instantaneous scalar concentration at plane y = 0 (Re = 650), b) instantaneous
scalar concentration at plane y = 0 (Re = 325), c) averaged scalar concentration at
plane y = 0 (Re = 650) and the location of transition, d) averaged scalar concen-
tration at plane y = 0 (Re = 325) and the location of transition.

9 Location of the transition

It can be deduced from the spatial distribution of the plotted variables in
Figs. 4 and 5, that the transition occurs at different heights (i.e. different z-
values) for the upstream and downstream parts of the jet. In order to seek
for a universal measure to define the location of transition, the concentration
distribution in the symmetry plane y = 0 together with the central streamline
(0.;0.;0.) of the averaged flowfield are plotted in Fig.6. Now, from Fig. 6a and
6b the location of transition in the symmetry plane (y = 0) is easy to deduce.
However, although not shown here explicitly, the transition location changes
with time. Therefore, it was decided that the averaged scalar field presents a
better measure for the transition point. For this reason the averaged scalar
distribution along the streamline trajectory is considered. As it can be seen
from Figs. 5c and 5d, the transition is characterised by a sudden enlargement
of the scalar area along the streamline. This area is marked by the white
”terminating” line for the streamline in Figs. 6c and 6d.
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From Fig. 6 it becomes evident that the Reynolds number has a clear
influence on the location of transition: transition occurs earlier in the case
of higher Reynolds number. For Re = 325 the transition at the streamline
trajectory occurs at s/D = 4.41 and for Re = 650 - at s/D = 3.49, or in
other words, the transition occurs approximately one diameter earlier for the
higher Reynolds number. Here, ”s” is the path along the streamline starting
from the point (0.;0.;0.).

10 Conclusions

Direct Numerical Simulation has been used to study the vortex structures of
the jet in crossflow. The simultaneous computation and averaging of all impor-
tant flow variables and scalar concentrations allows a detailed and concurrent
analysis of the turbulent flow structures and the occurrence of transition.

A local grid refinement technique with a factor 3 : 1 allows an optimal dis-
tribution of the grid nodes of the block-structured grid within the computa-
tional domain. This contributes considerably to the efficiency of the numerical
investigation and to the overall reduction of computational costs.

The use of a complex curvilinear grid and complex domain shape for the jet
in crossflow requires a large number of processors optimising at the same time
the distribution of the control volumes over the processors. The optimisation
process applied here in a separate preprocessing step takes into account the
histogram of the distribution of the number of control volumes per block, the
number of control volumes in the largest blocks and the parallel efficiency,
which in turn depends on the number of processors. For the present DNS the
optimum distribution of control volumes per processor was found when using
31 or 32 processors, allowing parallel efficiency of 91% to be achieved on the
XC HP 4000 high performance computer.

The Reynolds number has been found to be an important factor for the lo-
cation of the transition region. At the same time its influence on the trajectory
streamline of the flow is small.
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