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Abstract :

The first part of the paper presents a construction of orthonormal polynomial wavelets on the interval by means of
a Malvar–type decomposition in polynomial coefficient space. With this approach the localization of the wavelets
could be improved substantially compared to an earlier construction by the authors. The new basis is then applied
to the analysis of turbulence in the presence of walls. In particular, it allows to define local spectra in wall–
normal direction. As an example, DNS data of the flow in a plane channel are considered. The extension to higher
dimensions is performed as well.

Key words :

Turbulence ; Wavelets ; near–wall flow

1 Introduction

The investigation of coherent structures in near-wall turbulent flows is a very active area of
current research. It is motivated by their importance for many technical and environmental ap-
plications such as the resistance experienced by moving bodies, the exchange of heat and other
quantities, etc., and hence also for active and passive control of turbulence in this respect. Due
to their simultaneous localization in space and frequency, wavelets provide an attractive formal-
ism for the analysis of turbulent flows Farge et al. (1996). Compared to the proper orthogonal
decomposition, a wavelet decomposition typically applies many more basis functions, but on
the other hand these carry a length scale which then allows to analyze coherent structures in this
respect. Although wavelet analysis has frequently been applied to turbulent flows, the classical
constructions are generally not suitable for dealing with geometrically confined situations. For
this reason most investigations up to now were restricted to temporal analysis or periodic data
in wall-parallel planes Farge et al. (1990); Dunn and Morrison (2000).

Fröhlich and Uhlmann (2001) devised discrete orthogonal wavelets based on Legendre poly-
nomials for a wavelet transform on the interval. In order to be suitable for data analysis wavelets
should fulfill the following properties :

1. Existence of a discrete orthogonal transform to avoid increase of data size.
2. Orthogonality with respect to unit weight to establish a relation to the physical energy
3. Symmetry of the absolute value
4. Good localization in physical space

When considering data on a bounded interval this immediately introduces the distance to the
closest wall as an additional length scale. Exact shift invariance and symmetry are necessarily
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lost in one or the other way if orthogonality is required, and exact scale invariance can not be
maintained as a consequence. Hence, these properties can, right from the start, only be obtained
with some relaxation. Suitable choices can however be made in order to provide a decomposi-
tion following at best the demands of the analyst. A detailed discussion is provided in Fröhlich
and Uhlmann (2001).

In this reference, wavelets compliant with the above requirements were constructed by
lumping normalized Legendre polynomials ��� such that the wavelet space for scale � is�����
	� ���������� ������� ��� ��� � ��� ��� � � ��!#"%$ � �'& ��� ��� (1)

using the result of earlier work by Fischer and Prestin (1997). In Fröhlich and Uhlmann (2001)
and Uhlmann and Fröhlich (2002), this basis was used for the analysis of turbulent flows, e.g.
in terms of local wall–normal spectra. Unfortunately, the decay of these wavelets in space is
only linear. This is remedied with the new construction presented in the next section.
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Figure 1: Left: Window functions ( �*) �,+ with respect to the polynomial degree � generating the
partitioning into wavelet spaces for � �.- � � & � � � ����� (zoom around the origin). Right: wavelet
functions for scale index � ��/ (shifted vertically by multiples of 5). The lower two correspond
to the new basis with rapid decay, the upper two to the old basis with linear decay.

2 Polynomial wavelets with rapid decay

After some research we found that the present goal can be achieved through a continuation and
suitable combination of earlier work by Malvar (1990), Coifman and Meyer (1991), Auscher
et al. (1992), and Kilgore et al. (1997). The basic idea is to relax the index bounds for � in
the definition of the spaces

� � while still conserving 0�1�2 � � � $ �3� � and orthogonality. This
can be accomplished by a Malvar–type decomposition in “frequency”, here represented by the
integer degrees of the basic polynomials. For the latter we select

�4� )65 + �
7

� � �

�98 � ) - 5 + (2)

where 8 � is the classical Legendre polynomial. The wavelets of scale � on the interval 5�:; - � � � <
are then defined by

= �?>@)A5 + � BC �EDGF ( �H) �G+JI �?>@) �G+��4� )65 + � �K& � � ��� ��� 1 �'& �������L� � � - �
(3)
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with

( �H)A5 + �
������ �����
��� ���
	�� 	���� � � : ;�� � -�� � � � � � � � � � <

� � � : ;�� � � � � � � � ��!#" -�� � ��!#" <��� 	�������� � 	�������� � � : ;�� � !#" -�� � ��!#" � � ��!#" -�� � � !#" <
& � else

(4)

and

I �?> ) �G+ � ) - � + > !#" �� ��!#" - � ������ "!$# � - � �� ��!#" - � �%! 1 � �

��&'& � (5)

Here, we choose � � �'� � � � � � � � �)(+* � � & � � ��� ��� � (6)

With
� � " � & and ('� " ) & + � �

one gets ,�F � � � " �3������4� ��F $ . For the mollifying function�.- ; - � � � <0/ ; & � � <
we use the suggestion of Daubechies (1992) developed for Meyer wavelets.

The resulting windows are represented in left part of Fig. 1. Examples of the new wavelet
functions are depicted in the right part of this figure. They have a decay rate of

=21 5 �
3 , in the
sense that this behavior is observed over some distance for large scale index � and remote from
the interval boundaries. Two corresponding functions from the old basis are added for compar-
ison. A detailed discussion of the construction and its properties will be provided elsewhere,0 1 2 � , � $ � 0�1�2 � � � $ , e.g. unavoidably yields odd wavelets. The wavelets according to (3) are
unevenly distributed over the interval and their characteristic “frequency” of oscillation changes
with position as visible in Fig. 1. This is accounted for by an appropriate way of distorting the
usual scalogram, a technique developed in Fröhlich and Uhlmann (2001). A local spectral–like
analysis at a given point in space is unaffected by this issue.

3 Higher dimensions and local wavelet spectra

The extension to higher dimensions can be accomplished in two ways. The first is based on
a multi–dimensional multiresolution analysis combining wavelets and scaling functions. The
second employs tensor products of wavelets only. In our earlier work we found that the second
approach is preferable here.

In both approaches wavelets of different type in different directions can be coupled. The
data analyzed below result from DNS of plane channel flow performed with periodic condi-
tions in streamwise and spanwise direction. When considering a scalar signal 4 )A5 �65G+ in two–
dimensional slices with 5 the periodic streamwise or spanwise coordinate and 5 the bounded
wall–normal coordinate it is appropriate to employ periodic wavelets in 5 , denoted 7= . The
tensor product decomposition then reads

4 )A5 �85,+ � scaling functions
� 9C

��: DGF 9C
��; DGF=< �

: � "C
>>: DGF?<

� ; � "C
>>; DGF 4 � :A@ � ;>>: @ >B; 7= ��: @ >>: )A5 + = ��; @ >>;H) 5G+ � (7)

The coefficients 4 � :A@ � ;> :�@ > ; of the development are obtained by computing the scalar product of the
signal with the corresponding wavelet functions, which is possible due to the orthogonality of
the bases. For 7= we take cubic spline wavelets.

Local spectra can then, roughly speaking, be obtained by specifying a position )A5 �85,+ , se-
lecting the shift indices 1�C �%1ED such that the corresponding wavelets are located at or close to*

froehlich
Eq. (5) corrected w.r. to earlier versions  !!!
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this point, and plotting the coefficients 4 � : @ � ;>>: @ >>; with respect to �)C��@�)D . A statistical average
� ��� ,

e.g. over different planes from one flow, yields a physically significant quantity. With two in-
dependent indices, � C and �)D , however, the interpretation is complex due to the large amount of
information. Here, we therefore consider the one–dimensional case where an average is per-
formed over all 1�C �@�)C , in other words over all points with the same wall distance 5 . this yields a
one–dimensional spectrum which can be obtained as� ) 5��@�)D + �

�
� � ; C��: @ >>: �� � D � ) 4#+ � : @ � ;> :�@ > ;	� D�
 � <� � (8)

This is equivalent to directly performing one–dimensional transforms, a procedure which in
fact was employed to generate the figures below. For ease of interpretation and comparison
between different locations 5 , the independent variable � D is replaced by the scale number  D . It
is a measure of the period of oscillation in space of the wavelet

= ��; @ >>;H) 5,+ as defined in Fröhlich
and Uhlmann (2001), in other words it is the spatial scale characterizing this function. The
factor � ��; allows to compare a lokal spectrum with a global spectrum where the � ��; coefficients
on each scale are taken into account. In analogy to Fourier analysis the pseudo–wavenumber��D � � (  D is defined and used to obtain the pre–multiplied spectra used in the literature with
Fourier spectra.

4 Results

The data considered here result from a DNS of plane channel flow at ���� � /�� & performed by
the second author. In this DNS, the domain of � #�� � � # was discretized using � & & � *�� / �� & & discrete Fourier–Chebyshev–Fourier modes. Statistics from 150 streamwise–wall-normal
planes gathered over one flow-through time were used.

The analysis has been performed for all three velocity components, so that 4�� )�� � � � � � * +
is one component of the velocity fluctuation and the corresponding pre–multiplied spectra are
denoted ��D � "@" � � D � < < � � D �����

, respectively. They are displayed in Figure 2. The large–scale
limit of the wall–normal coordinate in wall units is imposed by the channel height of � ��� � in
these units. For a given Reynolds number, increasing the wall distance yields a pre-multiplied
spectrum which is shifted towards larger scales. The exited scales are roughly proportional to
the wall distance. As observed in Liu et al. (2001), this is consistent with the attached–eddy
hypothesis of Townsend (1976) stating that eddies centered at a distance 5 from the wall extend
down to the wall and hence live on scales of order 5 . The behaviour of the three velocity
components is quite similar when analyzed in the present basis. It seems, however, that at5 ! � � & the relative fine–scale activity for  !D around 20 is somewhat larger for 4 than for the
other two components while for large 5 ! the energy in 4 lives at slightly larger scales compared
to ! and ( . Before definitive conclusions in terms of physical properties can be drawn additional
statistics should be compiled, though.

In Figure 2 the spectra obtained with the present localized basis are also compared to the
ones obtained when using the linearly decaying Legendre wavelets of Fröhlich and Uhlmann
(2001). The different values of the maxima result from the normalization and the logarithmic
horizontal axis for  !D . All peaks are now much more pronounced. This is a substantial im-
provement with respect to the earlier results. Further investigations can now be performed with
respect to two–dimensional local wavelet spectra and other geometries.
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of Karlsruhe. =�1 � (*5 =21 � (*5 3
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Figure 2: Pre-multiplied wall-normal power spectra �=D � � � ) 5 ! � � D + as a function of scale  !D in
plane channel flow at ��� � � /�� & with 5 ! � � � & �	� & � � & & � * & & � /H& & $ . Left: old wavelet basis
with linear decay, right: new wavelet basis with asymptotic decay

1 � (*5 3 . Line styles are
given in the upper right picture. From top to bottom the graphs show the spectra related to (a)
streamwise, (b) wall-normal and (c) spanwise velocity components. All curves are normalized
with respect to their maximum.
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