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Summary

The paper presents LES computations of subcritical flow around circular cylinders. Uni-
form upstream conditions have been investigated with Re = 3900 and Re = 140000.
The first case is considered for comparison between results obtained by the authors from
earlier structured and unstructured computations and new results from a recently devel-
oped unstructured French code. Spanwise shear modifies the flow in substantial points
and has been considered at Re = 6250. Time signals have been recorded and analyzed by
means of Fourier and wavelet techniques. These reveal important differences between the
flow with and without shear. Furthermore, work on the LES methodology is reported.
We present a model for the laminar boundary layer employing an integral method and
discuss the impact of streamwise variations of the grid on the computed resolved flow.

1 Introduction

The present paper is a follow—up of [17] concerned with the second phase of a common
research project between IFH Karlsruhe, EDF Chatou, and LMFA Lyon on LES for the
flow around cylinders.

Several studies have shown that Large Eddy Simulation (LES) is an appropriate sim-
ulation technique for bluff body flows. It generally yields better results than Reynolds—
averaged models and on the other hand is affordable also at high Reynolds numbers
when a Direct Numerical Simulation is too costly. Reviews on the subject can be found
in [33], [34]. The flow around a subcritical circular cylinder has been considered in sev-
eral papers on LES starting with the seminal work in [3]. This type of flow, due to its
transitional character, is very sensitive to even small disturbancies. This is well-known
from experiments [45] and has also been highlighted from a numerical point of view by
the recent grid-refinement studies in [22]. Hence, the configuration is a severe test case.
It is presumably more difficult than most industrial applications in similar geometry
where the upstream turbulence level is generally higher such as for the tube bundle flow
investigated by means of an LES on unstructured grids in [36].

The present paper is outlined as follows: We first report on recent computations for
the circular cylinder at Re = 3900 focusing on the application of the new unstructured
code developed by the French partners. Subsequently, computations at higher Reynolds
numbers are reported. We then outline new model boundary conditions particularly
suited for bluff-body flows. Finally, the flow around a cylinder in uniform shear flow



is considered focusing on the analysis of the complicated wake structure by means of
wavelet techniques.

Figure 1 Cut in the # — y—plane through the unstructured grid with 300000 tetrahedra used
for the computation with PRICELES.

2 Circular cylinder at Re = 3900

As an industrial partner, EDF experiences more than do academics the economical pres-
sure on its research and development activities. This different attitude, with all its pros
and cons, is one of the reasons for carrying out common research projects with partners
from both areas to a mutual benefit. Recently, management as well as technical issues led
EDF to abandon their code N3S for research on LES in favour of a new object—oriented
Finite Element code, PRICELES (Platform Rapide Industrielle CEA EDF de LES) being
developed together with CEA. At the same time the discretization scheme was revisited.
This issue is more involved and less standardized with unstructured discretizations com-
pared to structured or quasi—structured ones classically used for LES. Rollet—-Miet et
al. [36] proved that the P1/P1 element with suitable damping of oscillations is better
suited for LES than classical Finite Elements. Further tests [5] however showed that in
some cases a relatively fine grid is required to obtain satisfactory results. A new scheme
was therefore developed, a Pl-non-conforming/P1-bubble element, which mimics the
staggered grid arrangement in structured Finite Volume codes [6].

The flow around a circular cylinder at Re = 3900 which had been computed with the
structured Finite Volume code LESOCC [8] of IFH and N3S of EDF as reported in [17]
was therefore revisited as one of the test cases for PRICELES [4]. Preliminary studies
have shown that with PRICELES, more so than with N3S, regularity of the grid is an
important issue. Hence, the previous Finite Element mesh was replaced by a new one
with more degrees of freedom (600000 velocity nodes), lower aspect ratios, and smoother
variation of the step size. A cross section is depicted in Fig. 1. Spanwise periodicity was
replaced by a free—slip condition while increasing the respective extent of the calculation
domain from L, = 7 to L, = 5. (Note that everywhere in the present text distances are
normalized with the cylinder diameter and velocities with the mean free—stream velocity.)
All further characteristics were taken over from [17].
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Figure 2 Cylinder flow at Re=3900: The new results obtained with PRICELES compared
to the results of LESOCC and N3S (LRUN3 and NRUN1 in [17], respectively) as well as to
the experimental data of [23] as reported in [3] and [27]. Top: Profiles of the mean streamwise
velocity field at y = 0 (left) and x = 1.54 (right) Bottom: Profiles of the resolved fluctuations

(u'u") (left) and the mean normal velocity at # = 1.54 (right). The points where values from
PRICELES were stored have no relation to the grid employed.

The computed instantaneous flow exhibits the features known from earlier computa-
tions and experiments such as [43]. Flow visualizations [4] show the typical vortex roll-up
and braid—structures resulting from the formation of secondary spanwise vortices. The
computation was performed for 7 shedding cycles, 3 of which were used for averaging.
This amount is definitely too small for the statistics in the wake to converge with only
some saturation close to the cylinder being observed. Nevertheless, important informa-
tion on the behaviour of the code could be gained. Fig. 2 displays profiles of the average
velocity field in the wake and for (v'u') in comparison to the results in [17]. The recir-
culation length is obtained too short compared to the experiment [23]. In light of the
discussion in [22] this is likely to result from insufficient resolution of the separating lam-
inar shear layers and would certainly be improved by refining the grid in this region. In
[22] it is even conjectured that the experiment of [23] suffered from disturbances and that
ideally the recirculation region is larger reflecting a later transition of the shear layers.

Fig. 3 shows spectra from different LES of the considered flow as well as from the
experiment of [27]. Fig. 3a taken from [24] illustrates the better representation of small
scales when replacing an upwind scheme with a central scheme. Fig. 3b displays spectra
from the computation with the structured Finite Volume code LESOCC using central
differences, LRUN3 in [17], which have not been reported previously. It shows that with



Figure 3 Spectra in the wake of the cylinder at Re = 3900 on the centerline. a) One—
dimensional energy spectra Fq1 at & = 5 as compiled in [24]: — Experiment of [27], ¢ LES
of [3] with upwind-biased scheme, - - - LES with central/Fourier scheme of [24]. b) E11 in the
computation with LESOCC, LRUNS of [17], at £ =2,3,5. ¢) Spectra of turbulent kinetic energy
obtained with PRICELESS at = =1.5,2,3,4 [4]. Note that for reasons of flow topology Fi1 ex-
hibits a maximum at 25t while the kinetic energy has a maximum at St. Tic marks have been
droped because of different normalization of the axes.

increasing distance from the cylinder in the wake the spectra decay faster. This is partly
due to the physical decay of the turbulence as reported in [27] but mainly due to the
coarsening of the grid in streamwise direction. The extent of the inertial range at x =5
in LRUN3 is comparable to the one in [24]. Fig. 3¢ displays energy spectra from the
computation with PRICELES discussed above. Since the grid is coarser, in particular
beyond # = 3 (cf. Fig.1), the inertial range extends less far.

Table 1 Computations for the flow around a circular cylinder at Re = 140000.

| | RUN1 | RUN?2 | RUN3 | Experiments |
Ny X Ng XN, | 166x206x64 | 166x206x64 | 182x 306 x 96
L,/D 1 4 4
St 0.217 0.208 0.207 0.179 [9], 0.2 [37
Cp 1.157 1.246 0.91 1.237 (9], 1.2 [37
Chp -1.33 -1.40 -0.93 -1.21]9], -1.34[40]
Osep 93.5° 89.7° 88.6° 79° £+ 1° [39]
L./D 0.42 0.59 0.70 0.5 4 0.05 [9]




3 Circular cylinder at Re = 140000

The computation of the cylinder flow at Re = 140000 is substantially more demanding
than at the lower Reynolds number considered before. The flow is subcritical, just below
the drag crisis, so that the thin laminar boundary layer has to be resolved if a no-slip
condition is applied. Since the boundary layer thickness is proportional to v/Re this re-
sults in a factor of 6 in the resolution requirements compared to Re = 3900 [17]. Also,
in azimuthal direction a much finer grid has to be employed. Due to the refined grid the
critical time step decreases which further increases the cost. Consequently, we have to
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Figure 4 LES of flow around cylinder at Re = 140000. Mean streamwise velocity u and
Reynolds stresses (u'u'), (v'v’) along the centerline y = 0 (left) and on a line = = 1 (right). In
all plots —— RUN 1, — — — RUN 2, — - — . — Run 3. Comparison with experimental results
of [9] (full diamond) and an unsteady k — e computation of [15] (light square).



be content with fewer computations and less averaging in time. Two—dimensional studies
were performed in order to construct grids that meet best the requirements with the
available resources. To enhance the resolution of the boundary layer any stretching in
azimuthal direction was dropped and the number of points in this direction increased. In
[17] we have presented a first LES for this case with L,/D = 1. Two further computations
have now been performed with L,/D = 4, motivated by the observed correlation in z
and studies of the square cylinder [35]. They are summarized in Table 1. Other compu-
tations are available in [7] and [42]. In [42] the authors observe that very long averages
of the order of 40 shedding cycles might be required for fully converged statistics. Due to
limited resources we could only average over 10-14 cycles. Nevertheless, the performed
computations give valuable information on trends and sensitivities. In [7] no superiority
of the dynamic model with respect to the Smagorinsky model used in the present LES
has been observed.

Figure 4 reports profiles along the centerline y = 0 and & = 1 for various quantities.
It is apparent that in RUN1 the vortex shedding is too strong. As a consequence the
maxima of the mean streamwise velocity are less pronounced and the v—fluctuations are
over—predicted. Increasing the domain size to L, = 4 with the same number of grid points,
il.e. a coarser grid in z, yields only minor changes. An exception is the mean centerline
velocity which levels off at a substantially lower value. The third run has been made
with an increased resolution in all directions. The resolution of the shear layer is now
substantially better which is reflected by the improved result for (@)(x = 1) outside the
recirculation. The Reynolds stresses are substantially lower which is the right tendency
(the reported stresses are the resolved ones to which a subgrid scale contribution has to
be added). On the other hand the values for Cp, — Cyp are too small. We conjecture
that the discrepancy results from insufficient resolution of the separating shear layer.
The importance of this issue has recently been highlighted in [22] for Re = 3900. As in
[7], we observe too large separation angles compared to the experiments which is also
of relevance for the downstream shear layer. This occurs although the radial resolution
in our LES is Ar; = 0.00017 compared to 0.0004 in [7]. The cited computations in the
literature have mostly been made with a smaller spanwise domain size. Our results show
that increasing L, does not modify the result substantially. The resolution in radial and
azimuthal direction rather appears to be the limiting factor in the present cases. On
the other hand, substantial refinement in these directions in [7] did not yield a clear
uniform improvement of the result. Interestingly, the best agreement with experiments
was obtained with L, /D = 1. We shall continue to work on modelling issues as discussed
below in order to possibly obtain an improved and more cost—effective LES of this case.

4 Circular cylinder in presence of shear

4.1 Physics of the flow

Uniform upstream conditions constitute the classical setting for the study of the flow
around cylinders. In practice, however, the upstream flow is often non—uniform. Of par-
ticular interest is a gradient in spanwise direction as it disrupts the spanwise symmetry
of the configuration and generates qualitatively new features [45]. Applications are in the
area of buildings placed in the earth’s boundary layer, vehicle aero- and hydrodynamics
and industrial flows.
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Figure 5 Flow visualization of the vortex shedding behind a circular cylinder in uniform shear
flow at Re,, = 6250, pictures from [20]. Light regions show hydrogen bubbles trapped in like—
sign vortices crossing a laser sheet in the centerplane. There is no temporal correlation between
the snapshots. The aspect ratio is /D = 20.1 in the experiment. The aspect ratio L/D = 8 of
the LES is indicated by two lines.

Reviews on a circular cylinder in uniform spanwise shear are given in [18], [45]. The
characteristic parameter is the dimensionless gradient 8 = dus, /dz, where, as above,
cylinder diameter D and average free—stream velocity U, are used as reference quantities.
The gradient causes a variation in the stagnation pressure along the span which in turn
generates a secondary flow in front of the body and even more so in the rear (cf. Fig. 7
below). This yields a complicated three-dimensional flow structure interacting with the
vortex shedding. An important finding in the experiments with 7 # 0 such as [32] is
that the Strouhal number St = fD/U,, does not adjust continuously to the free stream
velocity. Rather, the dominant frequency exhibits cells of uniformity. The origin of this
behaviour is not entirely clear up to now. Woo et al. [44] have conducted experiments
with slotted end plates which inhibit the secondary flow to a smaller extent than the solid
end plates in other experiments. They found decreased cell structure. Balasubramanian
et al. [2] analyzed these results and conjectured that the strength of frequency cells is
closely related to end conditions. The interaction between the three-dimensional average
flow and the instantaneous shedding process is not yet understood [45].

4.2 Computational setup

Until now, cylinders in shear flow have mainly been investigated experimentally. RANS
models are expected to have similar problems as for uniform upstream flow. Here, LES
has a high potential. Recent investigations by means of DNS have been conducted for
Reynolds numbers Re,, = DUy, /v up to 200 [26],[25].

The present computations deal with the flow at a substantially higher Reynolds number
in a configuration which parallels the experiments by Kappler and Rodi [20], [21]. Fig.
5 displays the oblique vortex shedding generated by the shear flow. Characteristic is the
occurence of Y-shaped vortex dislocations with the points of junction propagating from
the high—speed end to the low—speed end. The experiment in Fig. 5 has been conducted at
Re,, = 6250, 5 = 0.04 and an aspect ratio of L/D = 20.1. Since an LES for this geometry



Figure 6 Instantaneous iso—pressure sur- Figure 7 Average flow field in the

face p = —0.6 in the rear of the cylinder. center plane for cylinder in shear flow:

In angular and radial direction only part streamlines in the x — z plane and av-

of the domain is represented. erage spanwise velocity depicted by grey
scale.

was unaffordable with the available resources the aspect ratio was reduced to L/D = 8.
The code LESOCC was used with the same numerical scheme as above. This is motivated
by the typical extent of the frequency cells mentioned above of around 4., so that ideally
2 cells would be generated in this domain. This was confirmed in a later experiment [21]
under the same conditions but with L/D = 8. Guided by the experience from the earlier
LES at Re = 3900, an O-grid of diameter 30D was employed with 178 x 176 x 174 internal
cells in radial, azimuthal and spanwise direction, respectively. Points were clustered in the
wake and at the cylinder surface. Laminar inflow was prescribed with u., = 1 + 8z and
a convective outflow condition was used. At z = %4 a free slip condition was imposed. It
represents at best the effects of the end plates with sidelength 8D in the experiment. The
effect of the employed Smagorinsky subgrid—scale model is only small since v, /v < 1.5.
After a transient phase, the computation has been conducted for 220 time units, i.e.
46 shedding cycles. Time signals were collected at # = 2.5,y = 0.5,z = 0.4n, where
n = —10...10 (the outermost at z = +3.9), similar to the locations in the experiment.
Another computation with 7 = 0 has been performed under exactly the same conditions
for comparison. Discussion and results in addition to the ones presented below can be

found in [16].

4.3 Computed flow field

Figure 6 shows a calculated pressure surface of the instantaneous flow. Closely behind
the cylinder the vortex core is parallel to the cylinder axis. Further downstream the von
Karman vortices become oblique due to the average shear. The angle which is formed is
clearly visible. Braid—like structures connecting the von Karman vortices can be discerned
as well.

Figure 7 depicts the computed secondary mean flow discussed above. The spanwise
component (W) increases up to 0.26. The streamlines of the average flow in the center-
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Figure 8 Spectra of the v—velocity signal. Left: results from the present LES with maxima
marked by crosses, right: experimental data from [21]. The frequency axis is normalized to
represent the Strouhal number. The spectra at different locations have been shifted upwards
according to their z—coordinate.

plane highlight the complex three-dimensional character of the flow. They barely display
uniformity in z around mid—span and exhibit substantial variations in z at the upper and
lower end. Also note the secondary recirculation zone formed at the upper end behind
the cylinder.

4.4 Fourier analysis of time signals

The spectra of the velocity signals recorded in the wake have been computed. They
exhibit a peak at the dominant shedding frequency and an inertial range over about one
decade [16]. Figure 8 shows a zoom around the dominant frequency and compares the
LES result to the experimental data for the same configuration [21]. The same cells as
in the experiment are observed.

Since, unlike in the experiment, in the LES the time signals have been stored simul-
taneously at the different locations the correlation coefficient p;; between two signals at
z and z; can be determined. We have defined a correlation length {(z;) = Az Z]' Pijs
Az = 0.4, to display this information in Figure 9. In the case without shear [ is larger
than half the domain size around mid—span and decreases away from it due to the pres-
ence of the boundaries. With G = 0.04 three distinct regions are observed with almost
constant value. In particular, the correlation drops towards mid—span where the jump in
the shedding frequency occurs in Figure 8. The lower spanwise correlation observed here
results in a lower amplitude of the fluctuations of the lift coefficient. Indeed, these are

only half as large for g = 0.04 compared to 5 = 0 [16].

4.5 Wavelet analysis of time signals

The above spectra and correlations constitute valuable statistical information but give
only an indirect picture of instantaneous mechanisms. This requires time-local averaging
as performed with the continuous wavelet transform (CWT) [19], [14]. Further quantities
can be defined based on this approach to address particular issues as detailed below.
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Figure 9 Correlation length [ as defined Figure 10 Time signal of v at midspan
in the text at different spanwise posi- with # = 0.04 and its wavelet analysis.
tions. Open symbols: # = 0, full sym- The ordinate s is scaled to correspond
bols: 8 = 0.04. to the Strouhal number and covers the

range [0.1,0.3]. The ridge is only retained
if [W(sg,t)|is larger than 80% of the av-
erage of || along the ridge.
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Any function ¢(t) with Fourier transform W and ey = [ |1Z(w)|2/|w|dw < oo can be

used to define a wavelet transform *
WiGsi) = [ )60 (4.1)

Here, dilated and translated versions of ¢ are denoted

Ve, () = V59 (s(t — 7)) (4.2)

while the asterisk stands for the complex conjugate. Oscillating signals are conveniently
analyzed with complex wavelet such as the one of Morlet with

Y(t) = 7 HA(eiwot — e—w§/2)e—t2/2 (4.3)

and wy = 5. The transform W then also is a complex value. The scale parameter s
plays the same role as the frequency in Fourier analysis and is normalized here so as to
correspond to the Strouhal number at which |1/)/s;(w)| attains its maximum. The value
|W(s,t)|? hence represents the energy of the signal f at time ¢ around the frequency s.
If sg represents the scale number at which [W(s,t)|? has a maximum for a given time ¢,
the curve sg(t), the so—called ridge, is an instantaneous analogon of the time-averaged
dominant frequency above.

In the following we concentrate on the normal velocity component as it is most directly
related to the shedding process. Figure 10 displays a v—signal and its CW'T together with
the ridge. The frequency range has been chosen in the vicinity of the Strouhal number.
It is obvious, that at irregular instances an interrupt or defect in the vortex shedding
causes the energy on scales St &~ 0.2 to collapse. We therefore retain the ridge only if
|W| exceeds a threshold value. A result of this investigation is that the instantaneous
shedding frequency hardly ever remains constant for more than 3-4 cycles but rather
fluctuates, as reflected by the undulations of the ridge, with a typical period of 5-6
cycles. Without shear (3 = 0) these undulations are much less pronounced in amplitude
and have a slightly shorter period, cf. Figure 12.
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Figure 11 Signals, ridges and intermittency coefficient for § = 0.04. The horizontal axis is
time, the vertical axis is the spanwise position of the signal. Left: v—signals. Middle: ridges as
discussed in the text. The shift in the vertical coordinate s between the ridges is 0.15. Right:
Intermittency factor I for St = 0.2. The continuous distribution between the signals results from
the interpolation of the graphics tool. To bring out more clearly the minima of I the gray scale
has been squeezed to the lower third of the range in each case. The straight lines have been
inserted by hand.
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Figure 12 Signals, ridges and intermittency coefficient for § = 0. For caption see Figure 11.

The defects mentioned above are related to an instantaneous decrease in |IW|. Since W
is a smooth function (cf. Figure 10) s can be kept constant when addressing this issue so
that the intermittency coefficient [14]

_ Wi (sO)P

Ist) = i (4.4)

with {.) denoting time averaging is an ideal quantity for their detection. Figure 11 and 12



display 1(0.2,t) for all signals. It turns out that with 8 = 0.04 defects are stronger than
without shear. Furthermore, they propagate from the low—speed end to the high—speed
end. Lines have been inserted in the figure by hand in order to estimate their speed
yielding a non—dimensional average of about 0.16. The original signals are displayed also.
Although here and there defects can be detected by hand, the intermittency coefficient
gives a simple and robust means for their determination.

Finally, the CWT can be employed to investigate which events contribute to the
Reynolds stresses. The idea is based on the observation that for a complex wavelet [28]

/_O; F(t) g(t) dt = é/ooo /_O:o Cry(s,0) dt ds (4.5)

where Cry(s,t) = R{W;(s,t) Wy (s,t)} is the so—called wavelet co-scalogram and R des-
ignates the real part. Now, if f and g are different components of the velocity vector the
total Reynolds stress can be obtained by integrating over C,. Hence, Cy,4(s,t) indicates
which scales and times contribute to the Reynolds stress. Figure 13 shows as an example
the vw—correlation at midspan. The intermittent generation of the Reynolds stress is
visible. Furthermore, there appears to be a drastic change in the phase around s = 0.2
in the case with shear compared to the one without shear.

In [16] a similar method is proposed to investigate two—point correlations and phase
shifts taking signals at different location for f and g in (4.5). It turns out that the
observed defects are accompanied by large phase differences between adjacent signals.
Further investigations along the above lines should be carried out to fully exploit the
potential of the approach.
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Figure 13 Instantaneous and scalewise correlation between the v— and the w-—signals at
midspan. Horizontal axis is time, vertical axis is log(s), s = 0.1...1. Left: § = 0.04, right:
B = 0. Top: Cyyy as defined in the text, scale from —0.0009 to 0.0008. bottom: angle between
W, and W,, in absolute value, light is 90°, dark is 0°.



5 Boundary condition by means of an integral method

The computations of flow around circular cylinders described above were made for
Reynolds numbers in the sub—critical regime where the boundary layer along the cylinder
wall remains laminar until separation. Transition to turbulence occurs after separation
in the shear layers. Resolving the boundary layer becomes increasingly difficult as the
Reynolds number increases and requires a finer and finer mesh. We have therefore de-
veloped a model for the windward boundary layer and implemented it in the LESOCC
code. It is based on an integral method and allows a coarser discretization normal to the
wall yielding savings in CPU time and memory.

The laminar boundary layer is unsteady as it is shifted around the cylinder by the
vortex shedding. This motion, however, is small and slow compared to the internal time
scale of the boundary layer: Dwyer, McCrosky [13] measured an amplitude of 3.7° for
the oscillation of the stagnation point for Re = 1.06-10° and in [31] the criterion St < 14
is derived for the second property to hold (here, St & 0.2). The instantaneous velocity
profiles in the boundary layer at a certain distance from the stagnation point hence
correspond to the steady state profiles at this distance from the average stagnation point
and the laminar boundary layer i1s amenable to a quasi—steady description.

Integral methods represent a boundary layer in terms of integrals over its thickness
such as the displacement thickness 6*, or the momentum thickness 6. The method of
Thwaites [10] is one of them based on the empirical relation

. do?
Ye® _FA)=A+B\ ; A=045 ; B=6

v ds

: (5.6)

where A = 62 dgf—;/y , s the tangential coordinate, and u, the external velocity in the
direction of s. Integration in closed form is possible yielding

0%(s) = %‘/5 AvuP=Vds +uP(s0)0%(s0) . (5.7)

The last term vanishes if sy is a stagnation point. Eq. (5.6) can be used for A €
[-0.1;0.1] with A = —0.09 corresponding to separation. The shear stress is subsequently
obtained by an empirical correlation for S(A) = ¢ u. 8/(2v), and 6 is obtained from a
similar correlation for the shape factor H(A) [10].

The implemented algorithm proceeds as follows: a one—dimensional problem along a
line of constant z is generated. This is straightforward due to the structured O-grid.
Actually, the method is applied to the mean flow so that only one such problem has
to be solved. Next, the stagnation point sy is determined as a zero crossing of the tan-
gential velocity. Then w, in (5.7) is replaced by \/2(pyw — po)/p. Using the wall pressure
i1s advantageous as it avoids to determine the location of u., particularly difficult for
medium Reynolds numbers. Eq. (5.7) is then integrated from sy until A < 0.095, i.e.
shortly beyond separation where 8 and 6* drastically increase.

The basis for using the above method in an LES is Schumann’s relation [38]

Tw — —Ul ; (58)

where u; is the tangential velocity at the wall-adjacent grid point. The integral method
applied to the mean flow yields (r,). With (5.8), local variations are accounted for by the



relation to @y . Eq. (5.8) furthermore allows to blend this method with a no—slip condition
which can be put in the same form. This is performed depending on the resolution of
the boundary layer, measured by the coefficient Ary/é*. If the latter is small, the radial
resolution is good and a no-slip condition is adequate (Fig. 14).

Tests have been performed in the two—dimensional setting for Re = 140000. Recall
that the physics of the wake are substantially different in this case compared to 3d, but
the windward laminar boundary layer remains almost unaffected. Figure 14 shows the
computed boundary layer thickness until separation and the resulting wall-shear stress
along the circumference of the cylinder. Three-dimensional LES with this model will be
performed in the near future. Note that with (5.8) blending to other wall models can
easily be performed by choosing a different way to determine (7, ) [16]. The method can
also be extended to turbulent boundary layers when replacing the method of Thwaites
by another, appropriate integral method.
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Figure 14 Determination of the wall-shear stress on the windward face with Thwaites’ method
as described in the text. Left: §* and Ar, the size of the wall adjacent cell in radial direction, ver-
sus the azimuthal angle. Right: computed wall-shear stress with blending to a no—slip condition
used.

6 Investigation of a variable filter size

In complex flows the mesh size of the employed grid cannot be kept constant as envisaged
in the classical concept of LES. This also applies to the above computations of the
flow around cylinders requiring substantial refinement near the surface of the body. The
cutoff scale then varies in space and interacts with the turbulence modelling. This can
be appreciated best when considering a flow with a statistically homogeneous direction.
Varying the mesh size and hence the filter width in this direction introduces a statistical
inhomogeneity of the resolved flow. To isolate the effect we consider developed channel
flow and apply a streamwise non—uniform grid. In [17] LMFA contributed a computation
in which an abrupt change of the mesh size was modelled. We have now performed a closer
comparative study of this phenonenom by means of plane channel flow at Re; = 10935 for
which a DNS is reported in [1]. An LES using the LESOCC code was perfomed on a grid
with a gradually varying streamwise step size and streamwise periodicity (Figure 15).
It contains two regions of constant step size, Azt = 220 and AzT = 30, respectively,
limited by two intermediate zones with 5% geometric stretching. The dynamic model



is used with averaging in spanwise direction and temporal relaxation [8]. The Werner-
Wengle wall model is used to bridge the distance between the first point at y} = 30 and
the wall, furthermore Az = 30. For the same grid LMFA performed a computation with
the statistical two—point closure S.C.I.T. [30] which has, compared to the study reported
in [17], now been generalized for anisotropic turbulence [41] and is briefly described in
Appendix A. The S.C.I.T. method is usually applied to model the entire spectrum, but
for the application to the problem of subgrid—scale modelling a spectral cut off K < K,
is introduced. The contribution K > K. is then modelled by a spectral eddy viscosity

-\ Cs -
vy, = (01 + Cy ([[g ) ) E(A{\c) (69)

with Cy = 0.267, Cy = 0.4724, C'5 = 3.742 as proposed in [11]. To represent the size of
the computational grid the cutoff wavenumber K, is set proportional to 1/A,.

Figure 15 shows < u'/u, >% on a cut along the centerline of the channel. The stream-
wise mesh size of the grid is marked by crosses. It is obvious that both methods, although
entirely different in their approach, give a very similar result. In accordance with the fil-
tering underlying an LES the resolved stress is smaller in regions of the coarse grid and
higher in regions of the fine grid. Instructive, however is the observed relaxation in zones
of constant mesh size after the stretching or shrinking. When the grid is coarsened, the
effect of filter becomes more and more pronounced. There, the energy loss appears to be
roughly proportional to the mesh size. The settling in the subsequent area of constant
mesh size is a little less pronounced with the LES method than with S.C.I.'T. When
the grid is refined energy has to be supplied to the newly added resolved fine scales by
the turbulence cascade. This process 1s slow compared to the time it takes a particle to
advance into a region of finer grid, although the stretching rate is only 5%. The resolved
stress increases slower than it decreased before and a substantial relaxation is observed.
In fact, the zone of constant fine grid has to be larger to achieve complete relaxation, but
this would have increased the cost of the LES substantially. It should be recalled that
in an a priori test when filtering a fully resolved flow field with a variable mesh size the
stresses would follow exactly the step size of the grid. This is not the case here due to
the dynamic process described above. It 1s illustrative to mirror the distribution which
corresponds to a reversed flow direction (Figure 15 right) to support the above remarks.

The performed computations demonstrate that coarsening the grid in streamwise di-
rection has much less effect than refining the grid. Indeed, the latter appears to be
detrimental to current subgrid-scale modelling. In the above bluff-body flows we are
only faced with the former, since the refinement of the grid takes place in the laminar
part of the flow. Research will be pursued in order to possibly develop a correction to
standard subgrid-scale models which compensates the observed phenomenon.

7 Concluding remarks

The present paper assembles various activities of the cooperation between the German
and the French partners. They concern the numerical aspect in that a structured and
two unstructured codes have been employed for the same flow. In particular, the reso-
lution requirement which is extremly demanding for the higher Reynolds number case
is discussed. A proposal for a boundary layer model to be integrated in such an LES
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Figure 15 Reynolds stress < u'/ur >2 on the centerline of a channel with variable streamwise
grid spacing as described in the text (+). The computation was performed for one period [0,25.1],
which is repeated in the figure to enhance clarity. Right: comparison between results of S.C.I.7T.

(= — —) and the LES performed with LESOCC (——). Left: plot of LES result (——) together

with the same data for a reversed flow direction (— — —).

of a subcritical cylinder has been made to alleviate this problem. The approach can be
extended for turbulent boundary layers as well. A more physical study has been under-
taken with the computation of the flow around a cylinder in uniform shear flow at a
much higher Reynolds number than considered in the current literature. For this pur-
pose, analyzing techniques have been developed which take into account variations in the
instantanous character of the signal. They reveal defects in the regular vortex shedding
which propagate in spanwise directions and appear more frequently in the presence of
spanwise shear. The implemented algorithms can partly also be applied to the available
experimental time signals, and this will be done in future work. Finally, the model study
of streamwise grid refinement highlights the methodological problems this may create.
Although this issue is pertinent to many cases where LES is applied to complex flows it
has to our knowledge not been investigated in detail up to now. We will continue work on
this issue as it seems to be desirable that an SGS model should account for such effects.
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Appendix A: Turbulence model employed by LMFA

The S.C.I.T. model (for Simplified Closure for Inhomogeneous Turbulence) [30] is based
on a statistical spectral approach, that is to say on a description of turbulence by cor-
relations at two points. It is known that two—point models directly take into account
information on different length scales, up to the Kolmogorov scale. Consequently no ¢
equation 1s required. Before being applied to real flows, the complex formulations of
two—point closures for inhomogeneous turbulence must however be simplified. This is the



approach followed when developing the S.C.I.T. model.

A first version of the S.C.I.T. model (S.C.I1.T.0) was proposed in [30]. The basic quan-
tity in S.C.I.T.0 is the turbulent kinetic energy spectrum E(K,)?,t) and consequently,
although a detailed spectral information was retained, the anisotropic properties of tur-
bulence are only grossly accounted for. The next stage was to extend the approach to a
tensorial description of the turbulent spectra

goij(l(,)?,t) = /‘

|K|<K

@ (K, X t)do(K) (8.10)

with @ij(lg,)_(’,t) being the Fourier transform on the correlation {(u;(—7/2) u; (Z+7/2))
and K the modulus of K. It results in a new version of the model (S.C.1.T.1) [41] which
is applied here. The equation for ¢;; reads:

(% + (U@%) pi (X K1) = (—21/1(2 + gVQ) pi (X, K1) (8.11)
+P (XK )+ ph(X K t)
+pEV (X Kty + th(X K L)
+t;;(X K t)+ Dij (X K t)

in which the first term of the right hand side is a viscous contribution which can be
expressed exactly. The second term F;; is also a term which is not requiring a closure
(production term). The other terms pZ»L]» ,piLjW,tZ»Lj,tij and D, respectively, stand for the
rapid part of the pressure—strain spectrum, the echo term associated with wall effects,
the linear transfer, the non linear transfer and the inhomogeneous transport term. These
terms were closed introducing various assumptions described in [41]. One of the basic
ingredients in the model is the use of the EDQNM theory to express the transfer term [29].
The relation between S.C.I.T.0 and S.C.I.T.1 is illustrated by the relation E(K,)?,t) =
1/2%2’([(,)_(’,15). Correspondingly, in S.C.1.T.0 only a transport equation for £ is solved.

The computation procedure consists in discretizing the K-space, and in solving at each
wave length K the six equations for ¢;; on the physical computational domain. Then,
one gets the information required to close the averaged Navier-Stokes equations, which
are solved together with (8.11):

(uiuj):/(joogoij(l(,)?)dl( : (8.12)

Concerning the near wall treatment, a spectral ”infrared cut-off”, depending on the
distance to the wall is imposed as in [30]. For the pressure strain correlation, an echo
term 1is introduced. The boundary conditions for the different turbulent quantities are
deduced from wall functions. A log law is assumed and a hyperbolic tangent profile is
used to match with the viscous sublayer [12].
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