A framework for predicting accuracy limitations in large-eddy simulation
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The accuracy of large-eddy simulations is limited, among others, by the quality of the subgrid
parameterization and the numerical contamination of the smaller retained flow-structures. We char-
acterize the total simulation-error in terms of the ‘subgrid-activity’ s, which measures the relative
turbulent dissipation-rate (0 < s < 1) and the ‘subgrid-resolution’ r. This analysis is applied to
turbulent mixing of a ‘Smagorinsky-fluid’ using a finite volume discretization of fourth order accu-
racy. On fixed coarse grids, i.e., at constant computational cost, the total simulation-error decreases
monotonically with filter-width A for large s while for smaller s the total error may even increase
with decreasing A. The corresponding modeling — and spatial discretization-error contributions are
quantified at various resolutions.
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The intricacies of turbulent flow have motivated a number of modeling strategies. These are aimed at reducing the
complexity of the underlying dynamical system while reliably predicting the primary flow phenomena. In large-eddy
simulation (LES) these conflicting requirements are expressed by coarsening the description on the one hand and
capturing the generic flow-features on the other hand. This is achieved by spatial filtering and subgrid modeling.
The filter-width, identified with the length-scale parameter A in the subgrid model, determines the physical detail
retained in the LES solution. How much of this information is actually properly represented numerically is a crucial
matter [1], [2], [3]-

We quantify the role of the numerical method and the subgrid parameterization in relation to the accuracy achieved.
Next to A, the main quantity that determines the quality of the solution is the ‘subgrid-resolution’ r = h/A in which
h denotes the mesh-spacing. If r < 1 then numerical effects are comparably small and a grid-independent solution
to the modeled LES equations is approached in which the remaining errors are due to modeling deficiencies. The
associated computational cost is, however, comparably large. Conversely, if r & 1 then physical detail up to scales of
order A could be retained at smaller computational cost, although numerical effects may substantially contaminate
the solution. The difficulty hence resides in assessing the errors and specifying simulation parameters optimal for
computational cost.

We simulate the compressible three-dimensional temporal mixing layer in a cubic domain of side-length L. This
flow displays a mixing transition to small scales and is characterized by helical pairing. Visualization of the DNS data,
obtained on a uniform grid with 1923 cells, demonstrates the roll-up of the fundamental instability and successive
pairings; Fig. 1 displays a well developed state. 2.2: A fourth order accurate, conservative centered finite
volume method was adopted for the discretization of the convective terms, in combination with explicit
compact storage second order Runge-Kutta time stepping. The time-step was determined according
to stability requirements consistent with a fixed C'F'L number such that temporal integration errors
are negligible. Further details may be found in [4]. The large-eddy simulations were started from a filtered DNS
field. First, the DNS field was filtered using a top-hat filter with a width equal to the parameter A in the subsequent
LES. Second, the data were restricted to the grid employed in the LES. Resolutions 323, 483, 64% and 96> and a
variety of subgrid resolutions r are included.

We consider LES using Smagorinsky’s subgrid model. The turbulent stress tensor 7 is modeled according to
7i; = —(CsA)?|S|S;; where S;; = (0u;/0x; + O0tu;/Ox;)/2 is the rate-of-strain tensor, |S|? = 25;;S;; and Cs = 0.1
which roughly corresponds to the averaged dynamic coefficient in the developed stages of this flow. The simulation is
initiated from the filtered DNS field at ¢ = 40, i.e. we skip the transitional regime in which the excessive dissipation
of the Smagorinsky model is known to prevent a turbulent flow from developing.

Simulations are performed at different A and r. In Fig. 2, the streamwise kinetic energy spectrum A(k) is displayed
while the model parameter A is reduced together with A such that r = const. On coarser meshes, both large and small
scales are changed considerably by changes in resolution. 2.1: The spectrum at low wavenumbers is slightly
too low on 323 grid points. The numerical contamination and the well-known excessive dissipation of
Smagorinsky’s model accumulate and show up also in an underprediction of the lower wavenumbers.
At higher resolution a convergence toward the unfiltered DNS spectrum is observed. We also considered simulations
in which A was kept constant while increasing the resolution, i.e., investigating the limit » — 0 [5]. In this case the
grid-independent solution for the Smagorinsky fluid is approached for the corresponding A and only errors due to
subgrid model deficiencies remain.

In order to quantify the numerical and modeling errors in a concise manner we monitor the volume-averaged resolved
kinetic energy,
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where 1 is the filtered velocity and (-) the average over the flow domain € of volume |©2|. In the developed flow regime
E decreases almost linearly with time ¢ [4]. The relative total simulation-error of the quantity E is denoted by dg
with
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where the norm ||f]|? = :01 f2(t)dt/(t1 — to) represents time averaging with to = 40, #; = 100. The LES prediction
is expressed as Erps and the associated Frys was obtained by top-hat filtering the DNS-data at width A and
evaluation on the grid with LES-spacing h = rA. Here, the notation emphasizes the dependence on A and r. A
complete simulation is hence characterized by a single number §g, which facilitates further comparisons.

For incompressible flow the evolution of E is governed by 0E /9t = —(e;) —(e,), where the turbulent — and molecular
dissipation are e; = —7;;0;u; and ¢, = gij 0;T;/ Re with Re the Reynolds number. The amount of turbulent dissipation



is the central quantity used to assess the importance of the subgrid model, i.e., to quantify the amount of modeling
in an LES compared to a DNS. We therefore define the subgrid-activity parameter
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so that by definition 0 < s < 1 with s = 0 corresponding to DNS and s = 1 to LES at infinite Reynolds number. 1.1:
At fixed resolution an increase in the filterwidth A implies a decrease of r and an increase in s.

Given a solution u; and a filter such that w; = G * u;, an a priori link between s and the filter width A can be
obtained, i.e. a relation s = s(A). If a subgrid model is introduced the same value for s results, provided the model
captures the dissipation correctly. 2.3: The relevant subgrid-activity is the value of s which is obtained in an
actual LES. This includes a specific subgrid model, e.g. the Smagorinsky model in the present study.
For every subgrid model this is uniquely defined and can be obtained during the simulation without
further assumptions. As an illustration we consider the case of isotropic turbulence with three-dimensional energy
spectrum £ (k). For the Smagorinsky model we have
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with G the Fourier transform of G and (IS)?) = (|S]?)?/2. Correspondingly, (¢;) depends on C's, A and parameters
specifying £, in particular the Kolmogorov length 7. Inserting, e.g., Pao spectrum and Pao filter it reads [6]
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As n — 0 this expression should imply s — 1 which yields Cs = 1/7 for the Pao filter (different from the classical
value of 0.18 since a filter other than the cut—off filter is used here). The case (g;) = (¢,,), i.e., s = 1/2 further clarifies
the interpretation and can be used to distinguish LES from operating either in the inertial or in the dissipation range.
According to (4) this corresponds to A = 10.43n. Although Fig. 2 shows that in the present case the spectrum is
steeper than k~°/3 and the average is also taken in time it turns out that (4) describes the relation s(A) quantitatively
correctly if 7 is properly selected. 1.3: From a curve-fit of (4) to the relation between s and A as obtained
from the simulations, an extremely good fit of the present data is found when selecting 1 = 0.0035L.

The quantity s constitutes a versatile measure to classify and compare LES solutions since for any subgrid model
s can be computed during the simulation. No further assumption on the spectrum and/or on the particular filter is
needed. The simulations reported here exhibited time-independency of s with variations < 1 %. 1.1, 2.3: Moreover,
variation of r by varying the resolution at fixed A displays only a very weak effect on s. The parameters
r and s can be regarded as independent and s is primarily a function of A.

Fig. 3 shows the total error g as a function of s. The two regimes for s smaller or larger than 1/2 can be
distinguished, indicated by the different slope of the dashed line approximating the data for the highest resolution.
1.2: The error-estimates dp for s 2 1/2 at different resolutions almost coincide as a function of s as long
as the resolution is adequate, i.e. r S 1/2. In these cases the modeling error dominates. The condition
r < 1/2 corresponds to s > 0.4 on 64%; s > 0.51 on 48%; s > 0.65 on 32° in the present flow. 1.1: This near
collapse of the data as s 2 1/2 strongly favors the use of r and s to characterize the errors over A and
h separately, from which one could also have started when characterizing the error-dynamics. For the
computationally appealing coarser grids, changing from r = 1/2 to r = 1 can even result in an increase of the error
dg, as experienced for 483.

We further establish the error-behavior by a decomposition of the error into modeling error and discretization error.
LES at a fixed A and r < 1 approaches the grid-independent solution for the Smagorinsky fluid. This solution differs
from filtered DNS only because of deficiencies in the subgrid model, which are hence independently quantified by
d,m = 0p(A,r = 0). Likewise, at fixed A, comparing LES at a given r with LES at » < 1 allows to isolate the
spatial discretization error dg 4. It is obtained when in (2) Epyg is replaced by Epps(A,r ~ 0). These results are
compiled in Fig. 4. 2.4: The results have been grouped according to the resolution and consequently the
value of r varies along the curves that represent the discretization error effects. The magnitude of the
numerical error increases with increasing value of r (e.g. for 32%: 1/4 <r < 1; 64% 1/8 <r < 1/2) and dominates
for r = 1.

We characterized simulation errors arising in LES of a turbulent mixing layer in terms of the subgrid-activity s and
the subgrid-resolution r. Using a time-averaged error norm the behavior of the relevant modeling and discretization
errors can be efficiently quantified in this framework.



It is of interest to investigate the error behavior at different flow conditions, e.g., at higher Reynolds numbers, for
different numerical methods, e.g., also for second order finite volume and spectral methods, for different flows, e.g.,
wall-bounded flows, and with different subgrid models. Qualitatively, several limitations for LES corresponding to
these extensions can be understood in terms of variations in r and s.

The ‘subgrid-activity’ s appears to be well-suited for the assessment of different kinds of errors and can be interpreted
as a computable replacement for A/n. It is even tempting to determine a precise estimate for n by adjusting its value
in (4) to match the data of s obtained from actual LES with different values of A. This might also be done locally in
a statistically stationary inhomogeneous flow, thus extending the present framework to more complex flows. Before
being reliable, however, this requires further experience with other configurations. These issues are a subject of
ongoing research.
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FIG. 1. Snapshot of normal velocity at ¢ = 80. The light (dark) iso-surface corresponds to upward (downward) motion.

FIG. 2. Spectra of resolved kinetic energy versus wavenumber at t = 100 with different resolutions: 32* (solid), 483 (dashed),
64% (dash-dotted) and 96* (dotted) keeping r = 1/2. Markers correspond to the DNS.

FIG. 3. Relation between relative total error in kinetic energy dr and subgrid-activity s. Markers correspond to different
resolution: (*): 323, (+): 483, (O): 643, (o): 96°. The dashed line identifies the two regimes discussed in the text.

FIG. 4. Modeling-error dz,m (solid, o) and discretization-error dg 4 versus subgrid-activity s. Markers correspond to different
resolution: (*): 323, (4): 483, (O): 643.
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FIG. 1. Snapshot of normal velocity at ¢ = 80. The light (dark) iso-surface corresponds to upward (downward) motion.
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FIG. 2. Spectra of resolved kinetic energy versus wavenumber at ¢ = 100 with different resolutions: 32 (solid), 48> (dashed),
64% (dash-dotted) and 96° (dotted) keeping r = 1/2. Markers correspond to the DNS.
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FIG. 3. Relation between relative total error in kinetic energy dr and subgrid-activity s. Markers correspond to different
resolution: (*): 323, (+): 483, (O): 643, (o): 96°. The dashed line identifies the two regimes discussed in the text.
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FIG. 4. Modeling-error dz,m (solid, o) and discretization-error dz,4 versus subgrid-activity s. Markers correspond to different
resolution: (*): 323, (4): 483, (O): 643.
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