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ABSTRACT

Interfacing Large Eddy Simulation (LES) with a down-

stream Reynolds-Averaged Navier–Stokes (RANS) zone for

incompressible flows is investigated. The mean velocity

fields are matched at the predefined interface and velocity

fluctuations of the LES zone are allowed to leave the domain

by employing a convective boundary condition. For incom-

pressible flows, in addition, it is also necessary to prescribe

conditions for the pressure or an equivalent variable. Two

situations are considered: (i) The instantaneous pressure is

solved globally within the union of the LES and RANS do-

mains and (ii) the pressure fields are completely decoupled.

For the latter, several alternatives of handling the issue of

mass conservation at the interface were studied. The perfor-

mance of the different methods is scrutinized for turbulent

channel flow and the flow over periodic hills. It was found

that for the first test case the pressure coupling was uncriti-

cal whereas, for the hill flow, decoupling of the pressure with

explicitly enforced mass conservation at the interface yielded

the best and, for some situations, the only acceptable results.

INTRODUCTION

Reynolds-Averaged Navier–Stokes (RANS) calculations

are able to deliver reliable results for many flows encountered

in applications of engineering interest. In situations where

these are not sufficient, Large Eddy Simulation (LES) is the

next best choice. For LES, the large-scale motion is com-

puted directly and only the small-scale motion is modeled,

hence information on large coherent structures can be gained

and less strict modeling assumptions need to hold. The price

to pay is a substantially higher computational cost. In fact,

it may be so high that LES is not affordable for a very com-

plex high-Reynolds number flow or an extensive parameter

study. A remedy is the coupling of LES and RANS calcu-

lations. Such a hybrid method restricts the use of the more

expensive LES to regions of the flow field where RANS pre-

dictions are likely to be inadequate, e.g. in regions where the

effects of large coherent structures are of interest.

The interfacing of LES with a downstream RANS zone

considered here can be very instructive as an intermediate

step towards wall-modeling for LES, but it is also of prac-

tical interest in its own right. This is the case for flows

where changes in the mean pressure field and/or geometry

far downstream of the region of primary interest have a suf-

ficiently strong upstream influence. For such kind of flows,

a simple outflow condition cannot be applied close to the

region of interest as was shown for a swirl stabilized model

combustor by Pierce & Moin (1998). However, lengthening

the domain by adding a RANS zone and hence including the

downstream effects may be an attractive alternative to more

complex boundary conditions (von Terzi et al., 2005).

VELOCITY COUPLING

For LES-to-RANS type boundaries in flows with station-

ary statistics, the RANS zone can and should only provide

mean values, whereas the LES delivers a time-dependent

solution. Therefore, the role of the interface is to allow

for mean flow information to propagate upstream and for

the fluctuations to leave the LES domain without reflec-

tions. To this end, a general and parameter-free method

can be applied (von Terzi, Fröhlich & Mary, 2006) that cou-

ples the explicitly Reynolds-averaged variable at the LES

outflow directly to the RANS inflow boundary, whereas

fluctuations are convected out of the LES domain using a

one-dimensional, linear convection equation:

∂φ

∂t
+ Un

∂φ

∂n
= 0 (1)

where n is the direction normal to the interface, Un = 〈un〉
the averaged velocity in the n-direction, and φ the resolved

fluctuations of the quantity to be coupled. For incompress-

ible flow, only the resolved velocities are coupled this way,

hence φ = u′i = ui−〈ui〉. Here, the overbar denotes the filter

implied by LES and the brackets represent the Reynolds av-

erage which is explicitly applied in any homogeneous spatial

direction of the interface plane and in time. The physical

meaning of (1) is that the downstream transport of fluctu-

ations across the interface is dominated by convection. For

this to be true,

Un > 0 and Un À
∣∣u′n

∣∣ (2)

In addition, laminar and modeled turbulent diffusion across

the interface must be negligible which, however, is uncritical

for turbulent flows and adequately resolved LES.

The coupling condition of (1) is implemented in its

discrete form using a first-order upwind difference in the

n-direction (index j along a grid line normal to the inter-

face) and a so-called θ−scheme (Tannehill et al., 1997) with



0 ≤ θ ≤ 1 in time (t = m ∆t):

φm+1
j = C1 φm

j + C2 φm
j−1 + C3 φm+1

j−1 (3)

C0 = 1 + θ Ũn

C1 =
(
1− (1− θ) Ũn

)
/ C0

C2 =
(
(1− θ) Ũn

)
/ C0

C3 = θ Ũn/ C0

where, for a Finite Volume method, the interface is located

at the face between the cells with index j (RANS-side) and

j − 1 (LES-side). For θ = 0.5, as chosen for all simulations

presented here, this results in the implicit second-order ac-

curate trapezoid rule. The parameter

Ũn = Un ∆t/∆n (4)

is the Courant–Friedrichs–Lewy (CFL) number for the con-

vective problem. The resulting coupling conditions are then

Um+1
j−1 = 〈um+1

j−1 〉 (5)

for the streamwise velocity U at the inflow boundary of the

RANS calculation and

um+1
j = Um+1

j + u′m+1
j (6)

for the resolved streamwise velocity u at the LES outflow

boundary, with u′ obtained from (3) using a lower bound

for Ũn of 10−14 to ensure Un > 0. All other velocity com-

ponents are computed accordingly. Setting C1 = C2 = 0

and C3 = 0.98 in (3), recovers the ad hoc formula for the

so-called enrichment strategy of Quéméré & Sagaut (2002).

In addition to the downstream RANS considered here, they

successfully applied this technique also as a wall-model for

LES by placing the RANS zone between the LES zone and

the wall.

PRESSURE COUPLING

For incompressible flows with well-posed boundary con-

ditions, mass conservation inside the fluid domain is im-

plicitly enforced through the pressure field or an equivalent

constraint variable, e.g. the streamfunction. These variables

are governed by a Poisson-type equation such that the con-

vective condition (1) cannot be applied to their fluctuations

and a different way of coupling the LES and RANS domains

needs to be devised. In the following we restrict ourselves to

formulations involving the pressure. Two distinct possibili-

ties of handling this variable at the interface are scrutinized.

One possibility is to solve the instantaneous pressure

globally in the union of the LES and the RANS domains.

We denote this case C4 in order to keep the notation of

von Terzi et al. (2006). It is a strong coupling that enforces

instant mass conservation in the complete fluid domain. If

the algorithm for the Poisson solver employed uses a domain

decomposition technique no adjustment to the algorithm is

necessary making this a very attractive approach. However,

some turbulence models, in particular most of the subgrid-

scale models employed for LES, represent only the deviatoric

part of the unresolved stresses. As a consequence, a common

interpretation of the pressure in the corresponding momen-

tum equations is that of a modified pressure, where the

missing isotropic term of the unresolved stresses is implic-

itly added to the physical pressure. If this is the case on any

side of the LES–RANS interface, then the sudden change

in physical meaning of a pressure solved continuously may

cause complications.

An alternative approach is to decouple the pressure fields

of the LES and RANS domains completely. In this case,

both the velocity and pressure fields are discontinuous at

the interface and mass conservation across this boundary is

not guaranteed. Ignoring the mass conservation issue is the

method identified as case P1 below. P1 constitutes a weak

coupling since by matching the averaged velocities at the in-

terface, the mean mass flux is maintained. Instantaneously,

however, this is true only if the net mass transport of the

fluctuations across the interface sums up to zero at each in-

stant in time. This is likely not to be the case at startup of a

simulation, when the explicit time average has not converged

yet, and for situations where (2) is violated at the interface,

e.g. close to walls and for reverse flow. As a consequence

of a lack of instantaneous mass conservation, the boundary

conditions for the Poisson solver become ill-posed and the

solver converges poorly or not at all.

The problem of an integral mass flux imbalance is not

limited to LES/RANS coupling, but occurs routinely with

projection methods for incompressible flow. As a remedy, a

global mass flux correction is applied computing the mass

flux over all inflow boundaries ṁin and calculating the ac-

tual mass flux over all exit boundaries ṁout due to the

uncorrected exit velocities u∗i . All velocity components at

all outflow cells can then be scaled with the same factor

ui = fm u∗i with fm =
|ṁin|
ṁout

(7)

In practical simulations, the mass flux ratio fm in (7) is

usually very close to one. This “global correction” can also

be applied to the velocities constructed with (5) and (6)

at the LES/RANS interface. For the LES boundary cells,

one needs to replace ṁout in (7) with the mass flux leaving

the LES domain ṁLES. Conversely, the velocities in the

RANS boundary cell are then scaled using the magnitude

of the mass flux entering the RANS domain |ṁRANS|. The

simulation with decoupled pressure and a global mass flux

correction is called case P2 below.

For coupling of LES and RANS in case of complex ge-

ometries, we might have multiple embedded LES domains

making the global correction cumbersome, if not impossible.

Hence, a local approximation to the global flux correction

above is proposed here with |ṁin| in (7) being replaced, at

each simply connected interface, by

ṁinterface = 1/2 (ṁLES + |ṁRANS|) (8)

with ṁLES and ṁRANS determined by integration over the

corresponding interface. A simulation using this “local cor-

rection” is denoted as case P3.

TURBULENCE MODELS AND NUMERICAL METHOD

For all cases presented here, the Smagorinsky model

and the Spalart–Allmaras model are used for the LES and

RANS regions, respectively. The constant in the Smagorin-

sky model was chosen as Cs = 0.065. For the RANS model,

a transport equation for a modified turbulent viscosity ν̃t

is solved. This equation requires a reasonable inlet-type

boundary condition at the interface. It is provided by solv-

ing the transport equation also in the LES domain, albeit

using the explicitly Reynolds-averaged velocities.

The simulations were performed with the Finite Volume

flow solver LESOCC2 (Hinterberger, 2004) developed at the



Institute for Hydromechanics at the University of Karlsruhe.

It solves the incompressible time-dependent filtered Navier–

Stokes equations together with transport equations required

for the turbulence models on body-fitted curvilinear block-

structured grids. Second-order central differences are used

for the discretization of the convection and diffusion fluxes.

Only for the convection term in the transport equation for

the eddy viscosity the monotonic HLPA scheme is employed.

An explicit, low-storage, three-stage Runge–Kutta method

is used for time advancement.

TURBULENT CHANNEL FLOW

First, we will compare the different pressure coupling

techniques (C4 and P1–3) for fully developed turbulent

channel flow at a Reynolds number based on the friction

velocity and channel half-width of Reτ = 395 and based

on bulk velocity of Re = 7000. For this setup, there exist

Direct Numerical Simulation (DNS) data from Moser et al.

(1999) for comparison and any adverse effect of a coupling

can be immediately detected in form of streamwise varia-

tions of statistics or reflections of instantaneous quantities

(von Terzi et al., 2006).

The domain is divided into three parts: the inflow gen-

erator, the principal three-dimensional LES zone and the

two-dimensional RANS zone. All quantities are made di-

mensionless using the channel half-height δ and the bulk

velocity Ub at the inlet of the principal LES zone. The inflow

generator is a stand-alone LES with periodic boundary con-

ditions in the streamwise direction and a mass flux enforced

by volume forces. It provides planes of instantaneous veloci-

ties for the inflow of the principal LES zone. For each of the

LES zones, the domain size is 2 π × 2× π in the streamwise

(x), wall-normal (y), and spanwise (z) directions, respec-

tively. Grid stretching is employed only in the wall-normal

direction. Both domains are discretized using 80× 100× 80

cells resulting in a near-wall scaling of y+
1 = 1.45, ∆x+ = 32,

and ∆z+ = 16. The RANS domain extends over a length of

4 π on a stretched grid in the streamwise direction. The same

wall-normal grid as for the LES zones is utilized with one

cell in the spanwise direction. The time step was ∆t = 0.01

and statistics were sampled over t = 350 δ/Ub starting after

steady statistics were obtained. All averages were taken in

time and the lateral direction.

In figure 1(a) and (b), wall-normal profiles of mean

streamwise velocity and resolved longitudinal Reynolds

stress in near-wall coordinates are shown. The profiles were

taken from the main LES domain in the plane adjacent to

the interface. All simulations compare well to the DNS ref-

erence data with the coupled simulations exhibiting a slight

improvement over the LES data computed on the same grid

without coupling.

Figure 1(c) demonstrates the change in meaning of the

pressure between DNS, LES, and RANS. Integrating the

averaged wall-normal momentum equation results in 〈p +

v′v′〉 = const. as seen for the DNS data. Hence, the mean

pressure of the DNS and the mean modified pressure of the

LES 〈pLES〉 change with y. On the other hand, consistent

with its modeling assumptions, the Spalart–Allmaras model

yields a constant modified pressure in the wall-normal di-

rection, i.e. pRANS = p + 2K/3 = const., where K is the

turbulent kinetic energy. However, 2K/3 6= 〈v′v′〉 due to

the near-wall anisotropy. As a consequence, close to the

wall, 〈pLES〉 should differ from pRANS across the interface

and some adjustment is to be expected. A simple correction

matching pRANS and 〈pLES〉+2Kres/3 with Kres being the

resolved turbulent kinetic energy is not adequate, whereas

using 〈pLES〉+ 〈v′v′〉 is not general enough to hold for other

flow configurations.

Figure 2 provides a closer look at the interface. The

streamwise development of instantaneous velocity and pres-

sure and the mean pressure at three different wall-normal

locations are shown for cases C4, P1, and P2. The results

of P3 are very similar to the other P-cases and are therefore

not shown for brevity. The plots demonstrate that the in-

stantaneous velocities fluctuate in the inflow generator, move

on through the principle LES domain and leave the latter

without reflections. On the RANS side of the interface, a

steady mean velocity is obtained. A jump at the interface

can be discerned since only the mean values are continuous.

The instantaneous pressure behaves alike, albeit with two

differences: One is that, in the inflow generator, the mean

pressure gradient is missing, since it is represented by the

volume forces instead. The other is that for the global pres-

sure coupling (C4) the pressure is continuous at the interface

whereas for the P-cases a jump similar to the velocities is

clearly visible, but the mean flow gradient is continuous. For

case C4, in the near-wall region of the interface, a slight ad-

justment of the mean pressure can be seen. This is due to the

change in modified pressure as discussed above. Since cases

P2 and P3 agree well with case P1, mass flux corrections are

obviously uncritical for this configuration. In fact, fm − 1

was of the order of 10−4, for both P2 and P3. The global

mass flux correction (P2) achieved the best convergence rate

of the Poisson solver, whereas the maximum residual of case

P3 remained one order of magnitude larger than for all other

cases (10−5 instead of 10−6).

Contrary to variations in the velocity coupling (von Terzi

et al., 2006), the different pressure interfacing methods

tested here all delivered excellent results and no clear su-

periority of any of these methods can be discerned.

FLOW OVER PERIODIC HILLS

The channel flow is a sensitive but uncritical test case

since the flow is fully developed so that no downstream in-

formation is really needed for the upstream LES. This is

different for the flow over periodic hills. This configuration

was devised by Mellen et al. (2000) and detailed reference

data were presented by Fröhlich et al. (2005). The Reynolds

number based on the hill height h and the bulk velocity over

the crest is Reb = 10595. The distance from hill to hill

is 9h, the domain height 3.036h, and the width 4.5h. As

with the channel flow, the simulation is divided into three

distinct zones (figure 3). The first zone is computed with

LES using wall functions and periodic boundary conditions

in the downstream direction. 200× 64× 92 cells are used in

the downstream, wall-normal and lateral directions, respec-

tively. This zone provides reference LES and inflow data.

For the second zone, LES is performed using the same reso-

lution as in Zone 1. At a pre-defined location, the simulation

switches from LES to RANS, and the third zone with a two-

dimensional grid begins. At the RANS outflow, Neumann

boundary conditions are applied. ∆t ≈ 3 × 10−3 and the

total simulation time was roughly 390 h/Ub. Two locations

for the LES/RANS interface are considered: (i) on the crest

of the hill and (ii) before the crest of the hill as illustrated

in figure 3.

For the interface placed on the crest, all methods yielded

excellent results making this an uncritical test. The interface

at x ≈ 7, on the other hand, constitutes a severe challenge.

A conventional convective outflow condition at this position,



i.e. no coupling to a RANS calculation, produced strong re-

flections and regions of separation before the outflow plane,

before eventually the solution diverged. The same happened

for cases C4 and P1. This could have been expected, in par-

ticular, considering the strong fluctuations of large coherent

structures in the center of the channel and the slight sep-

aration bubble at the bottom of the upstream hill front.

Both are likely to cause violations of the assumptions for

the velocity coupling stated in (2). Nonetheless, cases P2

and P3, i.e. the decoupled pressure fields with mass flux

correction, yielded reasonable results. This is shown in fig-

ure 3 for case P3: The mean streamlines reveal that, for

the two-dimensional RANS solution, reattachment occurs

far too late, consistent with RANS results in the literature

showing that this method is inadequate for predicting the

separated flow region. However, the RANS zone successfully

provides the upstream LES domain with the pressure and

mean velocity information due to the streamline curvature

induced by the hill rising behind the interface. Therefore,

the LES in Zone 2 is able to deliver results similar to the

reference solution of Zone 1, albeit with a slightly longer re-

circulation region. Both reattachment lengths of 4.1 h and

4.3 h for Zone 1 and 2, respectively, are close to the reference

value of 4.6 to 4.7 h of Fröhlich et al. (2005). The instan-

taneous velocity contours show that the RANS flow field is

indeed steady, whereas the unsteady velocities on the LES-

side of the interface leave the domain without any obvious

reflections.

More quantitatively, in figure 4, profiles of mean stream-

wise velocity and resolved Reynolds stresses obtained from

simulations P2 and P3, pure LES on the same grid, and a

reference LES of Breuer & Jaffrézic (2005) employing twelve

million cells are compared for selected downstream locations.

The region of primary interest for the hill flow is arguably

the recirculation region as shown in plots (a) and (d)–(f).

Differences to the reference LES can be expected for the

mean flow and must be expected for the resolved fluctua-

tions due to the coarser resolution, but these are tolerably

small. Differences between the coupled simulations P2 and

P3 compared to the stand-alone LES cannot be discerned for

the mean flow and are small for the resolved stresses where

they constitute a slight improvement. Even in close proxim-

ity to the interface mean flow deviations remain small (figure

4b). The temporal spectrum of the streamwise velocity at a

point in the LES domain right at the interface is shown in

figure 4(c). No artificial peaks in the spectrum appear which

might be generated by the presence of the interface. They

compare well to the reference spectra at nearby locations of

Fröhlich et al. (2005).

Other than for the channel flow simulations, the flux cor-

rection is crucial for the hill flow and was substantially larger

(fm − 1 = O(10−3)). Overall, the convective velocity cou-

pling with decoupled pressure fields and mass flux correction

achieved the main objective of any LES/RANS coupling: the

LES region was shortened without deterioration of the re-

sults in regions of interest. The rear of the hill was then

computed using a two-dimensional RANS calculation, i.e. a

fraction of the number of cells in this region of lesser interest

was employed.

CONCLUSION

Coupling of LES with a downstream RANS at a sharp

interface was investigated for incompressible flows. On the

LES-side of the interface a convective condition (von Terzi

et al., 2006) was applied to the velocity fluctuations whereas

the explicitly averaged velocity was directly coupled to its

counterpart in the RANS domain. This method can be re-

garded as a generalization of the enrichment technique of

Quéméré & Sagaut (2002). It is free of parameters and more

robust. The method performed well for turbulent channel

flow irrespective of the choice of pressure coupling technique.

Depending on the placement of the LES–RANS inter-

face, the hill flow is a challenging test case for coupling LES

to a downstream RANS calculation. It was shown that the

present velocity coupling can yield very good results. For

the pressure, it turned out to be necessary to decouple the

two domains completely and then to explicitly enforce mass

conservation across the interface. This was achieved by scal-

ing the total velocities on either side. The mass flux to be

enforced was either specified globally, e.g. as the mass flux

through all inlets of the LES domain, or determined locally

by averaging the existing fluxes on both sides of the inter-

face.

The local mass flux correction is more general, easier to

implement for complex flow situations, and seems to be very

robust. Although this method requires a long startup time

until the running averages are sufficiently converged and is

less strict in enforcing continuity, decoupling of pressure with

a local mass flux correction delivered very promising results

for both test cases considered. Taking into account that only

the decoupled pressure with mass flux correction delivered

acceptable results for all configurations, it is recommended

as the standard incompressible complement to the convec-

tive velocity coupling.
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Figure 1: Turbulent channel flow: Comparison of results with DNS reference data in near-wall scaling and role of modified

pressure; profiles for cases C4, P1, P2, and P3 have been obtained at the grid line next to the interface, LES denotes data from
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Figure 3: Flow over periodic hills with interface at x ≈ 7: Setup of simulation and results for case P3.
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(d) resolved longitudinal Reynolds stress
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(e) resolved wall-normal Reynolds stress
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Figure 4: Flow over periodic hills with interface at x ≈ 7: Profiles of mean streamwise velocity at selected locations, power

spectrum density of streamwise velocity at the interface, and resolved Reynolds stresses at x = 2; reference LES from Breuer

& Jaffrézic (2005); LES denotes data from the inflow generator.


