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Abstract. When meta-models are �tted to the underlying data it is essential to val-
idate the model by a trustworthy criterion. Many industry relevant applications are
characterized by a high input parameter dimension and time consuming, cost intensive
deterministic computations. In these typical cases the data size is not much higher than
the amount of coe�cients in the polynomial equation of the meta-model, which will lead
to an overestimation of the model quality determined by the Coe�cient of Determination
(CoD).
An alternative benchmark criterion for response surfaces can be delivered by cross-
validation (CV), where an overestimation of the meta-model quality is unusual.
This paper will use a published industry relevant example [4] to compare the simple CoD
with a Monte Carlo cross-validation CoD (CoDMCCV ). Detailed investigations of the
MCCV-method are made using a fast calculating test-model with similar characteristics
as the original deterministic model. The results will show the in�uence of the splitting
ratio, the number of cross-validation runs and the number of the deterministic samples in
the database on the CoDMCCV result values and their variance. To predict the variance
we will give correlations, for a code internal adjustment of MCCV calculation parameters.
The discussion will point out the importance of the sample to coe�cients ratio (SCR)
and conclude the advantages and disadvantages of the tested method.

a, b, c, d, e, f, g, h adjustment parameter O order of response surface
C number of coe�cients SCR sample to coe�cient ratio
CoD Coe�cient of Determination SR splitting ratio
CoDMCCV cross-validation CoD SRCV simple random CV
CV cross-validation x input variable
E number of input variables y result variable
i, j count variables ỹ meta-model result variable
K number of folds y mean of variable
KFCV K-fold CV σ standard deviation
MCCV Monte Carlo CV t training (samples)
n number of samples v validation (samples)

1 Introduction

�When a validity coe�cient is computed from the same data used in making an item anal-
ysis, this coe�cient cannot be interpreted uncritically. And, contrary to many statements
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in the literature, it cannot be interpreted `with caution' either. There is one clear inter-
pretation for all such validity coe�cients. This interpretation is � `Baloney!'� [1]
This conclusion by Cureton should remind the investigator of any data �tting problem,
that the commonly used Coe�cient of Determination (CoD) is not a stable criterion for
model �tness estimation in any way. In the second part of this paper we will discuss
the dependency of the CoD on the number of coe�cients n in the meta-model and the
number of simulations in the dataset. Afterwards we will show how this misleading model
�tness interpretation by the CoD can be avoided by using a cross-validation procedure.
Cross-validation as a method for model �tness evaluation was proposed by Mosier [6]. The
concept of cross-validation is to use separate data sets for model training and evaluation
respectively. Since in most real applications the amount of data is limited, it is necessary
to split the number of data-points n into a training data set nt and a validation data set
nv. Over the last decades di�erent kinds of cross-validation had been proposed, which
uses di�erent splitting procedures. A selection of them should be described here.

1.1 Cross-validation procedures

Leave-one-out cross-validation (LOOCV), which is also called delete-one CV or ordi-
nary CV is the simplest exhaustive CV procedure. Every single data point is successively
left out from the training dataset and used for validation as described by Stone [11]. The
number of CV-runs is equal to the number of samples n in the dataset. As a test criteria
for the LOOCV Myers and Montgomery [7] suggest the R2

prediction that uses the predictive
error sum of squares (PRESS)

R2
prediction = 1− PRESS

SST
= 1−

∑n
i=1[yvi − ỹvi]2

SST
(1)

and the total sum of squares (SST )

SST = yTy − [
∑n

i=1 yi]
2

n
. (2)

Alternatively they show the possibility to compute the R2
prediction without cross validation

by using the diagonal elements hii of the hat matrix H = X(XTX)−1XT

R2
prediction = 1−

∑n
i=1

(
yi−ỹi
1−hii

)2
SST

. (3)

Leave-p-out cross-validation (LPOCV) or delete-d multifold CV (Zhang [13]) is very
close to the LOOCV, but here a de�ned number p of data points are left out from the
training set and used to validate each response surface. This procedure is also exhaustive
since every possible subset p is left out once.

K-fold cross-validation (KFCV) also called V-fold cross-validation is computationally
less expensive compared to LOOCV and LPOCV. It was introduced by Geisser [3]. The
complete dataset is split into K subsets of approximately equal size n/K. Each subset is
successively used as validation set, whilst the other subsets are used to train the response
surface. The number of CV-runs is equal to K � the number of folds which is de�ned
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between 2, . . . , n but should not be higher than n/3 in a practical sense. If K would
be equal to n the procedure would be identical to LOOCV. The described method is
a partially data splitting procedure since not every possible combination of validation
subsets is used.

Another method with partial data splitting is simple random cross-validation
(SRCV) or Monte Carlo cross-validation (MCCV) respectively. The method has
been presented by Picard and Cook [8] and has been compared to the above listed pro-
cedures by Shao [10] and Xu [12], while they demonstrate outperforming results for the
MCCV applied in model selection. Compared to the KFCV the subsets are selected ran-
domly. Moreover the number of CV-runs and the validation subset size expressed by
the splitting ratio SR = nt/n are independently selectable. This additional freedom of
method con�guration makes it necessary to identify practical ranges for the con�guration
parameters.

The MCCV method will be evaluated in paragraph three of this paper by using a test-
model, which is emulating an industry relevant probabilistic investigation. Next to the
variation of the splitting ratio SR = nt/n and the number of CV-runs we will also show
the in�uence of n � the number of data points in the complete data set. We will also
compare the CoD [2], [9]

CoD =

( ∑n
i=1[(ỹi − ¯̃y) · (yi − ȳ)]√∑n

i=1(ỹi − ¯̃y)2 ·
∑n

i=1(yi − ȳ)2

)2

=

(
Cov(ỹ,y)√

V ar(ỹ) ·
√
V ar(y)

)2

(4)

to the CoDCV results that are computed in the same way but using only the selected
validation samples

CoDCV =

( ∑nv

i=1[(ỹiv − ¯̃yv) · (yiv − ȳv)]√∑nv

i=1(ỹiv − ¯̃yv)2 ·
∑nv

i=1(yiv − ȳv)2

)2

=

(
Cov(ỹv,yv)√

V ar(ỹv) ·
√
V ar(yv)

)2

(5)

to discuss the usefulness of cross-validation. Note that none of the response surfaces
computed with a training subset and validated with the corresponding validation subset
is used as the �nal meta-model. The polynomial equation of the �nal meta-model is
computed with all data points.

In general it is very important to know about the predictability of a meta-model since
it might be used to rapidly produce new data with a Monte Carlo simulation using the
polynomial equation. Another application is to estimate the importance of the input pa-
rameters using the meta-model, which is expressed by the Coe�cient of Importance (CoI).
If the model �tness to the underlying data is lower than expected by the investigator it
might lead to misinterpretation of parameter importance or erroneous interpretations with
the new data calculated on the meta-model.

1.2 Deterministic test-model used for evaluation

The probabilistic investigation of the impact of manufacturing variability on the perfor-
mance of a ten stage high pressure compressor, by Lange et al. [4] is in the core of interest
in this paper. In his investigation Lange described the rotor blade geometry of each rotor
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stage by 14 classical pro�le parameters. Due to the ten compressor stages there are 140
probabilistic input variables in the complete simulation.
The parameter scatter has been determined by real blade measurement with a 3D scan-
ner. For the probabilistic post processing by meta-models, linear regression models have
been used, which need 141 data points in minimum.
Since the CFD simulation of a ten stage compressor at seven operation points took about
3 days on an Intel® Core� i7 machine, it was decided to use 200 virtual realizations
created by optimized Latin Hypercube sampling. The results of this huge probabilistic
simulation showed that there are mainly two important parameters in each stage, with a
variation of their in�uence depending on the stage and the operation point. The �tness
of the meta-models evaluated with the CoD is between 0.95 and 0.98.

For a detailed investigation of the CoD behavior and possible improvements on meta-
model benchmark by cross-validation it was necessary to replace the above described
deterministic model by a fast calculating test-model. The created test-model follows the
idea of broadly emulating the main characteristics of the original model, but neglecting
the operation point variation.

The here used HiPar-test-model (for high input parameter space) is using 140 input
variables xi with i ∈ {0, . . . , 139} computing six di�erent solution variables y1, . . . , y6.
The input space of 140 dimensions is internally split into 10 groups - similar to the 10
compressor stages, controlled by k ∈ {1, . . . , 10}. Hence there are 14 input parameters in
each group.
The HiPar-test-model uses a combination of two public test-models mentioned in the
collection of Molga et. al [5]. For i = iG ∈ {0, 14, 28, 42, . . . , 126} a modi�ed version
of Griewangk's test function is used. Two variables xi and xi+1 are computed within
this function with a strong in�uence on the solution. Hence two variables of each group
have a higher importance. If i 6= iG Rosenbrock's test function is used. It has a lower
in�uence and is hard to approximate by a polynomial regression model. The standard
formulations of the test functions can be found in [5]. The modi�ed Griewangk function
as implemented in the deterministic test-model is as follows:

yGriew.k = a

[(
(bxi)

(e1·(c1−j)/c1) + d(bxi+1)
(e2·(c2−j)/c2)

)
+ f

(
cos(bxi)√
i+ 1

· cos(bxi+1)√
i+ 2

)]
. (6)

The step-wise exponent reduction using variable j as a counter is deactivated by setting
j to a �xed value of 1. All other model adjustment parameters are given in Tab. 1.

yRose.k = yGriew.k +

p+q(k)=139∑
i=p+q(k)=0

[
h1(xi+1 − x2i )2 + h2(1− xi)2

]
(7)

y1, . . . , y6 =
10∑
k=1

[
g

g + k
· yRose.k

14

]
(8)

Rosenbrock's function as implemented in the test-model is de�ned by equation (7), where
p ∈ {1, . . . , 13} and q(k) = 14 · (k − 1). So that, i ∈ {1, . . . , 13}; {15, . . . , 27}; . . . . The
results of each input variable group are added up to the result value y1, . . . , y6, as shown
in equation (8). There is a parameter in�uence reduction with increasing k.
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variable y1 y2 y3 y4 y5 y6
a 1/175 1/150 1/185 1/240 1/250 1/150
b 600 600 600 600 600 600
c1 140 110 85 60 66 75
c2 300 180 200 500 500 300
d 1.3 1.3 1.3 1.4 1.3 1.3
e1 1.44 1.40 1.45 1.49 1.51 1.455
e2 1.28 1.26 1.3 1.23 1.2 1.3
f 1000 200 400 300 2500 300
g 30 30 30 25 20 30
h1 5 7.5 9.5 10.45 11.3 17.9
h2 3 2 2.2 12 13 2

Table 1: Model adjustment parameter setting in the HiPar-test-model for the six di�erent
meta-models y1, . . . , y6

The parameter settings for the six output variables has been chosen to determine �rst
order response surfaces with Coe�cients of Determination of 0.98, 0.97, 0.96, 0.95, 0.94,
0.93 using a number of samples of n = 200. For a higher sample size the CoD will decrease
as described in the next paragraph. All 140 input parameter distributions are generated
by latin hypercube sampling with an uniform distribution in the interval [0,1].
The test-model is coded in C++ and is designed very �exible. It can be easily changed
in its amount of input parameters and other model characteristics, to perform further
investigations e.g. on the computation time in chapter 3.3. Next to the described test-
model with six solution variables, we used two other test-model types to enlarge the
insight of this investigation for some aspects. So there are up to 22 meta-models included
in the result analysis.

2 Characteristics of the CoD

The used test-model with 140 input variables is designed to produce data which can be
approximated by �rst order response surfaces with CoD values between 0.93 and 0.98 for
the six result variables, which is the same range as in the ten stage compressor model
investigated by Lange [4]. This is of course only true for the same sample to coe�cients
ratio of SCR = 1.4 when the number of samples is n = 200. It is important to see the
models CoD values always with respect to the existing SCR, since the CoD strongly
depends on the SCR.

The left graph of Figure 1 shows the CoD for the six solution response surfaces as function
of the SCR. For a SCR of 1.4 the values are equal to the original deterministic model.
By increasing n, the estimated quality of the meta-models is strongly decreasing. The
slope of the decrease is stronger for models with lower CoD values.
When the SCR reaches 12 the decrease stops and the CoD becomes nearly constant with
values between 0.71 and 0.91. Here the meta-model quality reaches its real maximum.
Below the saturation threshold of SCR = 12 the quality of the meta-models is clearly
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Figure 1: left: CoD of the six HiPar-response surfaces as function of the sample to coef-
�cient ratio (SCR), right: Di�erence between CoD and target-CoD (tCoD) as
function of the SCR for all tested meta-models

Figure 2: left: CoD as function of SCR, green symbols are above and red symbols are
below the saturation threshold, right: tCoD ranges as function of the 1.4CoD
revealed by the used 22 test-models

overestimated by the CoD.

To verify this connection between the CoD saturation and the SCR, some more test-
models should be used. The right graph in Figure 1 shows the absolute di�erence of the
CoD to the target-CoD (tCoD), which is the average of the CoD at the two highest
SCR-values. The shown data include all 22 tested meta-models.
For models with a very high tCoD close to unity the deviation is small for the complete
SCR-range. In this case the saturation starts at low SCR values of about 3.
The highest observed deviation values (0.4− 0.6) for a SCR of 1.4 occur for meta-models
with a low tCoD < 0.5.
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All models with a tCoD between 0.5 and 0.975 show a similar saturation behavior. The
SCR-range of their saturation is between 7 and 22. The included trend line approximates
the averages of all shown values.

Figure 2 gives the computed CoD depending on the SCR, while the color of the data
points shows if the CoD is already saturated (green) or has still a di�erence to the tCoD
higher than 0.015. Most of the points (74%) achieve the saturation threshold in a SCR
range between 7 and 22. Moreover there is the clear tendency, that models with a low
tCoD achieve the saturation at high SCR values. An explicit connection between the
two variables can not be given due to the high observed scatter in the data and a quite
small database. But the chart is divided into three areas, that can help the investigator
to decide whether the computed CoD is reliable or not. In the red area we observed no
saturated result. In the green area all computations are close or equal to the tCoD. In the
yellow marked area we observed both, results above and below the saturation threshold.

The right graph of Figure 2 shows the connection between the CoD computed at an SCR
of 1.4 (1.4CoD) and the tCoD. The data points include the 1.4CoD values averaged
over a 0.025 wide range. For the �rst point this is for example the range between 0.975
and 1. The vertical axis represents the mean, min and max values of the corresponding
tCoD values. An interpretation of the shown data derived by 22 meta-models can be for
example: If the 1.4CoD is 0.97, the saturated tCoD can be between 0.48 and 0.87.

Generally spoken, it is important for the interpretation of any CoD value to know about
the SCR as well. If the CoD should be useful as test criterion the SCR should be in or
above the saturation range (7− 22).

3 Results of the Monte Carlo cross-validation

In this part we want to analyze the characteristics of the CoDMCCV by varying the compu-
tation settings splitting ratio (SR), the number of samples (n) and the number of CV-runs
for di�erent meta-models. The splitting ratio has been varied between 0.5 and 0.995. The
number of samples n has been varied between 200 and 1763 which corresponds to a SCR
between 1.4 and 12.5. The number of CV-runs is varied between 20 and 2000, while each
run includes the sample splitting, computation of a response surface using the training
samples nt and the computation of the single-run-CoD using nv. The result CoDMCCV

is the average of all this CV-runs.
If the complete calculation with all its internal CV-runs is repeated, the resulting

CoDMCCV will not be exactly the same since each selection of nv is randomly. But if
the number of CV-runs is high enough the variance of the CoDMCCV will be small. To
estimate the variation of the results in chapter 3.2, each computation has been repeated
20 times with constant computation settings.
The data points shown in Figure 3 are averaged over the 20 repetitions. The splitting
ratio is SR = 0.975. This leads to a number of validation samples nv = 5 for n = 200.
The left graph compares the CoD with the CoDMCCV for all calculated SCR values. The
CoDMCCV predicts a much lower response surface quality in particular if the SCR is low.
For the six response surfaces of the HiPar-test-model there is no overestimation of the
quality by the CoDMCCV . For SCR values in the saturation range, CoDMCCV and CoD
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Figure 3: left: Comparison of CoDMCCV that is averaged over 20 repetitions to the CoD
results for the HiPar-test-model; middle: average of CoDMCCV and CoD; right:
mean error of response surface approximation normalized with minimum mean
error tested with a complete independent sample set of n = 3000

converge into each other.
The improving response surface quality while increasing the SCR is shown by the right
graph in Figure 3. Here we present the mean error computed with 3000 independent data
points normalized with the minimum mean error that occurred. The graph shows, that
the response surfaces at a SCR = 1.4 have about 14% to 20% higher errors than the
best computed meta-models. The meta-models with minimum errors are reached at SCR
values of 7 or higher.

The center graph in Figure 3 shows the average of the CoDMCCV and the CoD up to an
SCR of 12.5 - the last given values present the CoD. These average values are nearly
constant over the complete SCR range, hence this criterion can be used as a rough
estimator of the tCoD that would be reached with a big database. The predictability of
the tCoD worked well for 91% of our test cases (20 out of 22 meta-models).

3.1 In�uence of the splitting ratio

Figure 4 shows the variation of the splitting ratio for the complete test range. There is a
positive correlation between the SR and the CoDMCCV if the SCR is low, e.g. SCR = 1.4
as shown in the left graph. Here the low SR values 0.71 and 0.75 with many validation
samples and the lowest possible nt do not give useful results. The practical relevant
SR-range for a low SCR is here between 0.9 and 0.975.

For a SCR of 3 the in�uence of the splitting ratio has decreased. Here the suggested
range is between 0.9 and 0.975 as well.

Response surfaces with a large database are only marginal a�ected by a SR variation
(Figure 4 right). The in�uence is only visible for an extremely high splitting ratio of
0.995, with 5 samples in the validation group. The useful SR-range is between 0.8 and
0.975.



12th International Probabilistic Workshop

Figure 4: In�uence of the splitting ratio (SR) on the CoDMCCV that is averaged over 20
repetitions and shown for di�erent data sizes

Figure 5: Variance of the MCCV results depending on model type, CV-runs and SCR

3.2 Result variation due to randomness

Due to the random selection of the test samples, the results of the CoDMCCV will vary
although the used data set is �xed for constant SCR. The amount of this variation
depends on the number of CV-runs and on the splitting ratio.

For the used test-model the σ is strongly increasing for very high splitting ratios above
0.975. For lower SR values there is a low positive correlation between SR and σ. For the
implementation of the MCCV-procedure in a probabilistic code it is important to predict
the variation of the CoDMCCV result value for a speci�c model type, to compute only
as many CV-runs as necessary to reach a speci�c min-max-range or σ of the CoDMCCV .
Therefore the three di�erent model types have been analyzed regarding their dependency
of the variation expressed by sigma or the min-max-range respectively. Graph 5 shows this
data with SCR as parameter. Symbols represent the results of the simulations (averaged
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Figure 6: Computation time of the MCCV

over three relevant splitting rations and all the models of the given type) and solid lines
are the trend-lines for the data-points. To estimate the necessary number of CV-runs we
developed correlations

range =
[−0.0081 · C + 1.6114] · SCR[1.5986·E·O

C
−2.1763]

√
CV-runs

(9)

σ =
[−0.002 · C + 0.4265] · SCR[1.5063·E·O

C
−2.1283]

√
CV-runs

. (10)

The dashed lines in Figure 5 represents the approximation of σ (10).

3.3 Computation time

The computation time of the CoDMCCV is in�uenced by the number of CV-runs and the
model size. Figure 6 shows the measured time for the MCCV of a linear meta-model.
The number of coe�cients is equal to the number of input variables plus one. The shown
data points are scaled to 100 CV-runs. The used machine is a ThinkPad® T61 with a
64bit OS, 4GB RAM and a Intel® Core� 2 Duo T8100 at 2.1Ghz. There is plenty of
room for improvements on hardware side and on the code optimization as well.
Figure 6 reveals, that there is a strong increase in computation time, when the model size
exceeds 100 input parameters. Fortunately it was shown in chapter 3.2, that huge models
need less CV-runs to achieve the same variance. Nevertheless the computation time will
increase for models with a high input parameter dimension, since a minimum number of
CV-runs will be necessary. This limit can be between 50 and 100.
Moreover the graph shows that there is a strong dependency on n, the number of samples
in the database, which is here expressed by the SCR. For a model with 200 dimensions
the computation needs 50s when 400 samples are used (SCR = 2) and 350s when 2000
samples are used (SCR = 10).
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4 Conclusions and summary

The presented paper showed that the CoDMCCV calculated by MCCV can give a more
realistic quality estimation of the response surface than the CoD. This is in particular
true for small sample to coe�cient ratios (3− 8). Here we started with very small SCR-
values of 1.4, where a strong overestimation of the meta-model quality by the CoD was
visible. In the saturated range, where the CoD becomes constant while enlarging the
database, the CoDMCCV and the CoD converge into each other. Using the results 22
di�erent meta models we developed a graph (Figure 2 left) that can be used to estimate
the reliability of any computed CoD value.

The cross-validation results are in�uenced by the splitting ratio (SR) only for very low
sample to coe�cient ratios (SCR). In our test-model with 141 coe�cients in the response
surface equation, a high SR of 0.975 showed good results for all sample to coe�cient
ratios. For the small test-models with only �ve input dimensions, smaller splitting ratios
(0.6− 0.9) work well.
For high SCR-values the in�uence of the SR is negligible.
The disadvantage of a high splitting ratio is the increasing scatter of the result values. The
investigation showed that the σ, estimated by a twenty times repeated computation, is
strongly increasing if the number of validation samples is below 10 in our HighParameter-
test-model.

To reduce the standard deviation for a �xed SCR, the number of CV-runs can be in-
creased. The necessary number of runs to achieve a target σ or min-max-range can be
estimated with the developed correlations given in (9) and (10). But be aware that the
equations are developed with the data of only three di�erent test-model-types with all
together 16 meta-models.
The reason to prefer low numbers of CV-runs, is the computation time, which is strongly
increasing for high dimensional models. Fortunately these models showed lower variances.

A good estimation of the target-CoD that would be reached if the SCR is high (>7 to
22) can be found by averaging the CoD and the CoDMCCV . The evaluation of 22 meta-
models showed that for 91% of the tested models the di�erence to the target-value is small
in the complete SCR-range. Hence this additional criterion can be used to predict the
possible meta model improvement that can be achieved by enlarging the database.

An overestimation of the response surface quality by the CoDMCCV can occur at very
low SCR values (<3), combined with a low target-CoD (<0.5). This untypical CV-result
occurred for three out of 22 meta-models. The observed e�ect must be investigated in
more detail by using more test meta-models with a low quality. This was not the core of
interest in the presented investigation.

Future work on this topic should reinforce the �ndings in this paper by using a greater
variety of test-models. Moreover we will include an alternative validation sample selection
algorithm. The K-fold cross-validation will deliver new data, that will be compared with
the current results. Advantages and disadvantages of both procedures will be compared.
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