The Teaching Trick
How to improve student learning without spending more time teaching

Kristina Edström
kristina@kth.se

Jakob Kuttenkeuler
jakob@kth.se

Kristina Edström
Engineer & Educational developer
- M. Sc. in Engineering, Chalmers
- Associate Professor in Engineering Education Development at KTH Royal Institute of Technology, Stockholm, Sweden
- 700 participants in the course Teaching and Learning in Higher Education, 7.5 ECTS, customized for KTH faculty, 2004-2012
- Director of Educational Development at Skolkovo Institute of Science and Technology, Moscow, 2012-2013

Strategic educational development, national and international
- CDIO Initiative for reform of engineering education since 2001
- SEFI Administrative Council, 2010-2013
- Editor-in-Chief of the European Journal of Engineering Education from 2018

Research
- PhD defense December 13, 2017

Some publications
PhD defense
December 13

Jakob Kuttenkeuler

- Professor in Naval architecture.
- PhD in Aerospace engineering.
- 10 years as director of two MSc programs and one PhD program.
- Research on design process of high speed craft optimization for sustainability, Routing etc.
- Teaches Hydrodynamics, Ship dynamics, Maneouvering, Propeller design, Sailing mechanics etc.
- Awarded the KTH prize for outstanding educational achievements.
- Engaged in CDIO since start.
Cost-neutral interventions

To persuade the grumpy professor to listen
To relieve those dedicated to teaching

Anyone can improve a course (at least some little bit) by working 100 hours more...

Yeah. We don’t have those hours.

And “more of the same” is often not the best strategy...
What if we were building a bridge…

What is it that we have today that keeps us from replicating the old bridge?

Technical competence

Pedagogical competence

1. setting clear objectives (intended learning outcomes)
 - relevant for the study programs
 - defining the threshold level of quality
 - deeper working understanding

2. uphold the threshold level of quality
 - only pass the students who reach the goals

3. create a course which generates appropriate learning activity
 - so students actually reach the goals
 - good throughput - with good quality
What work is appropriate for the students to do, to reach the learning outcomes?

How should the students demonstrate that they fulfil the learning outcomes?

What should the students be able to do as a result of the course?

Formulating intended learning outcomes

Designing activities

Designing assessment

Constructive alignment [Biggs]

Pedagogical competence

1. setting clear objectives (intended learning outcomes)
 - relevant for the study programs
 - defining the threshold level of quality
 - deeper working understanding

2. uphold the threshold level of quality
 - only pass the students who reach the goals

3. create a course which generates appropriate learning activity
 - so students actually reach the goals
 - good throughput - with good quality

4. and doing this while using teacher time effectively
 - generate appropriate study for the students
 - spend your time where it has effect on learning
 - create a sustainable workload for yourself
 - and sustainability for your institution and country
The acts of teachers need to be judged in the light of their impact on student learning.

Boud & Molloy, 2013

The teaching trick

Do more of that which contributes to learning
Pretty easy

But since we don’t have 100 hours more:

Do less of that which does not contribute
Pretty hard

Which one is easier and which one is harder?
Examples are illustrations of principles

A specific example will illustrate generic principles to inspire applications - of many different kinds.

Family dinner
/*/ no comments */
Invest 0,20 €
Pick me!
Seven minutes
Stroke of Genius
Master test
Fireworks
Ultimate Frisbee

We do the rest in a workshop tomorrow!
Family dinner

The teaching trick:
Do less of that which does not contribute

Spend less time on… marking coursework!
The weekly cycle

<table>
<thead>
<tr>
<th>Day</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Feedback session</td>
</tr>
<tr>
<td>i.</td>
<td>Students papers are exchanged randomly, and they write feedback with a red pen.</td>
</tr>
<tr>
<td>ii.</td>
<td>Students receive & read their feedback immediately.</td>
</tr>
<tr>
<td>iii.</td>
<td>Advanced and lively discussions!</td>
</tr>
<tr>
<td></td>
<td>Afterwards, teacher collects reports (or copies) for grading.</td>
</tr>
<tr>
<td>2</td>
<td>Introduce new content</td>
</tr>
<tr>
<td>3</td>
<td>Challenge</td>
</tr>
<tr>
<td>4</td>
<td>Workshop</td>
</tr>
<tr>
<td></td>
<td>Students work on their challenge</td>
</tr>
<tr>
<td></td>
<td>Support and discussions if needed</td>
</tr>
<tr>
<td>5</td>
<td>Challenge</td>
</tr>
<tr>
<td>6</td>
<td>Feedback session</td>
</tr>
</tbody>
</table>

1. **Read theory and Implement the method**
 (straight-forward implementation)
2. **Test and verify implementation**
 (normal use and extreme cases)
3. **Investigate creatively**
 (test variants, how would it work if... play around, think for yourself)
4. **Write short report (Limited: 2 or 3 pages)**
 (describe methodology, limitations etc and own initiatives)

What Professor K does...

The weekly challenge cycle drives the course
Here comes the trick: Easy marking 😊

Grading scale
- Fail = 0p (Seldom happens)
- Pass = 1p (Typical grade)
- Brilliant = 2p (Requires substantial own initiatives)
- Writing feedback = 1p (Needs to be of good quality)

Easy to see the difference between 0, 1 or 2 points, in fact it only takes about 1-3 minutes per paper…

At the end of the course, points are converted to final grade (no exam)
 + In some courses there is also an oral exam, 0 p, 10 p, 20 p

<table>
<thead>
<tr>
<th>Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-28</td>
<td>A</td>
</tr>
<tr>
<td>21-24</td>
<td>B</td>
</tr>
<tr>
<td>17-20</td>
<td>C</td>
</tr>
<tr>
<td>14-16</td>
<td>D</td>
</tr>
<tr>
<td>11-13</td>
<td>E</td>
</tr>
<tr>
<td>0-10</td>
<td>Fx</td>
</tr>
</tbody>
</table>

What about larger classes?

- **Thursday workshops**
 - Might need some more assistants (PhD students).

- **Feedback sessions**
 - Peer feedback works just as well.
 - The group discussions risk to be a little less “personal”.

- **Marking**
 - E.g. A few PhD students need to turn up in your office in time for marking.
 - Discuss the in-between cases.
The principle is to separate the processes

<table>
<thead>
<tr>
<th>Feedback for learning</th>
<th>Assessment for grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>- made into a group learning activity</td>
<td>- by the teacher</td>
</tr>
<tr>
<td>- intense involvement</td>
<td>- minimalistic</td>
</tr>
<tr>
<td>- learn to discuss the subject</td>
<td>- sufficiently fair</td>
</tr>
<tr>
<td>- immediate feedback</td>
<td></td>
</tr>
<tr>
<td>- expose variation</td>
<td></td>
</tr>
<tr>
<td>- social motivation</td>
<td></td>
</tr>
</tbody>
</table>

— then both can be made cost-effective

Good for learning!

Continuous studies
- Distributes student effort during the course.

The formative feedback session as a whole (giving feedback, getting feedback and discussions) generates learning:
- Repetition – Variation – Fast feedback.
- Deep & interesting discussions (instead of discussions on definitions).
- Social motivation – expose your understanding to others and see theirs.

Satisfaction:
- Students feel that the teacher really cares about their work.
- Clear, fair and transparent grading system.
- Students feel their progression.

Good for the teacher!
- ≈1-3 minutes per paper.
- Final grading is no extra work 😊
Invest 0,20 €

The Iceberg Principle

Group work with random presenter

Tell them on day one:
All students in the group should be ready to present the whole project and take questions on all parts

Last minute:
Choose the presenter randomly
Students choose
- It is possible to hide behind strong students
- There is little incentive to learn about each others work
- Only the best presenter will practice presenting
- Towards the end it is mainly the presenter who is working

Random choice
- Everyone knows you cannot hide
- Everyone must learn about all parts
 - what questions can we expect to get on X?
 - why did we choose to Y?
- Everyone will practice presenting

What is the cost?

About 0.2 €

The real cost is explaining the setup for the students

Some students will say:
- It is unfair!

You explain:
- It is. But, you see, the previous setup was unfair too. But now the learning will be much better for all!
Seven minutes

The teaching trick:
Do less of that which does not contribute

Spend less time on...
designing and correcting exams!
Oral exams are really good for learning

- **Influence student preparation** – they know they have to show "real" understanding, in real time (create the right expectation)
- **Better test of understanding** & can be individually tailored

Some teachers are nervous about...

having to invent the necessary questions

- The trick: Reverse the burden of proof (“the first 7 minutes are yours, to show me that you have reached the learning outcomes”)
- Follow-up questions will pop up without effort 😊

grading

- Use a simple scale: Fail / 10p / 20p

having to fail students

- Ask kindly how they think it went
- Audio recording

the time it takes

- But it is cheaper for a course of up to \(N \) students
- What is \(N \) for your course? Let’s do the math!

Written vs. oral exam, teacher time

Written:

Constructing one exam and solution-sheet takes ≈ 10-16 hours.
Correcting them takes ≈ 20 minutes per student.

Oral:

The exam takes ≈ 30 minutes.

No preparation for oral re-exam 😊

Let’s see if we get it

- 16 hours to prepare exam
- 80% passing rate
- One re-exam

Break-even is at 160 students
We have 400 students in Introductory Physics…

…but we also have more than 10 professors who know the subject!
Master test

The teaching trick:
Do less of that which does not contribute

Spend less time (energy) on... listening to students complaints!
Professor V has a course:

There were two individual assignments in the course:
- **Homework 1 & 2**
 The tasks were complex and theoretical…
 Students complained bitterly and endlessly:
 - The assignments come too **EARLY** before we know how to do this!
 - They are far too **DIFFICULT** and take **TOO MUCH TIME**!

The assignments were renamed:
- **MASTER TEST 1 & 2 (MÄSTARPROV)**

What happened?
- Complaints just stopped
- Students take the assignments very seriously – and are very proud!

...other interesting words...

- Accident
- Investigation
- Weekly challenge
- Show
- Master test
- Demonstration
- Gymkhana
- Show & Tell
- Fair
- Keynote
- TED talk
- Potluck
- Conference
- Deadline
- Inspection
- Q&A session
- Evaluation
- Summit
- Negotiation
- All hands on deck
- Campaign
- Consultancy
- Pitch
- Elevator pitch
- Pecha kucha
- Speed dating
- Match
- Audition
- Ceremony
- Installation
- Inauguration
- Boot camp
- Time out
- Grand challenge
- Dress rehearsal
- Opening
- Court hearing
- Stop-press
- Workout
- Personal training
- Vernissage
- Hearing
- Review
- Test pilot
- Advisory group
- Working party
- Quest
- Certificate
- Jam session
- Dissection
- Hackathon
- Talk show
- Level up
- Expert panel
- Investigation
- Workshop
- Emergency room
- Launch
- Countdown
- Pit stop
- Meeting
The trick question

Do more of that which contributes to learning \(\text{Easy part}\)
(especially when it is cheap)

Do less of that which does not contribute \(\text{Hard part}\)
(especially when it is expensive)

Doing additional things *on top of the old* is not sustainable…

So why do we often keep doing things that are less effective for learning?

Discuss 5 minutes with your neighbours

So why do we often keep doing things that are less effective for learning?

-
-
What reasons can there be...?

Convenience and minimising risk
- When I use traditional methods, there is no need to think, to make decisions, to explain, to defend, to persuade, to take responsibility...
- “When the old model doesn’t work, we blame the students, but if I try something new, then everything will be my fault”.

Lack of alternatives
- We never tried teaching in different ways and have nothing to compare with.
- We have not reflected on our routines and traditions.

Low capacity for course development
- It is true – we actually never thought of this because we truly believed that it would always take more time.
- We use all our time for running courses in an expensive fashion and have no time left for development
- Lack of knowledge and fantasy in course design.

Expectations
- Student expectations (or what we think they want).
- Colleagues expectations (or what we think they think).

Lack of learning perspective
- We teach in ways that make us feel (or look) good ourselves, without thinking so much about learning.
- We see teaching as a performance rather than a way to make learning happen.

Remember that we are here to improve education
The tricks are not just “oil in the machinery”
More importantly they imply
QUALITY TIME WITH YOUR STUDENTS
- more meaningful and fun, because it is value adding!

How to talk with students about this
NEVER SAY:
this is ”alternative” – I learnt a trick – I’m saving my time

Show that this truly belongs in the education
Several tricks address competences relevant for most educational programs. Make this explicit in the learning objectives!

After the course you should be able to (for instance)
• evaluate your own work and the work by others…
• critically analyse and give feedback on…
• critically assess alternative solutions…
• orally present and discuss your conclusions and the underpinning knowledge…
• argue and contribute in discussions about…

Student: Why do I need to read their report?
Teacher: Look at the course learning outcomes, This is how you practice to...critically review and give feedback on technical solutions! You will need that in working life.
My (not so) hidden agenda

Enabling educational development by addressing implementation
Furthering a learning perspective by gift-wrapping it

It is also about a more stimulating role for teachers
Value-adding processes are often more stimulating
The least value-adding processes are often boring routine tasks
Also note that the most value-adding processes are the last to be replaced…

What was our message?

Students can learn better without more work from the teacher.

What do people remember?

The teacher can save time.
And we only live once...