EUJIFILM

LUMINESCENT IMAGE ANALYZER LAS-3000 OPERATION GUIDE

2nd Edition 2004. Jun.

Introduction

Thank you for purchasing the FUJIFILM Luminescent Image Analyzer LAS-3000.

This guide is used for explanation of the equipment. Therefore, this guide simply describes each function and usage. Please see the Operation Manual for more detailed informations.

Index

-	East was filled and so that a fille	~
I	Features of the Luminescent Image Analyzer	3
2	System Configuration and Parts Identification	3
3	Preparation for Exposure	6
	1 Activation	6
	2 Setting of Samples	6
4	Exposure of Samples (Lite mode)	7
	1 Setting of Mode	7
	2 Method and Tray position Setting	7
	3 Adjustment of Focus	8
	4 Exposure Type and Exposure Time Setting	8
	5 Setting of Sensitivity	8
	6 Exposure	9
	7 Saving the Exposed Image	9
	8 Printing the Exposed Image	10
	9 Termination	10
5	Exposure of Samples (Pro mode)	11
6	Cautions on Use	12
	1 Sample Tray	12
A	opendix	12
	Exposure Type	12
	Operation required to be carried out for exposure with	
	green and red LED incident light sources (Optional)	13
	Detection Sensitivity and Number of Pixels	14
	Detection Reagents and Settings of LAS-3000	14
	5 5	

* In LAS-3000, the excitation light (incident/transmitted light), filter, lens, and the components of the analytic part vary depending on the system you are using. Please confirm each system. The basic system of "LAS-3000" is described in this Operation Guide.

Features of the Luminescent Image Analyzer

In LAS-3000, chemiluminescent and fluorescent samples can be detected in high sensitivity, Dark frame correction and Flat frame correction are equipped for the quantitative analysis of the images. A digitized image of stained gel, membrane or film can be obtained by white light illumination.

- A super CCD camera of 3,200,000 pixels is employed. A high-resolution image of 6,300,000 pixels is obtained by the special image processing procedure.
- A newly designed lens of F0.85 with remote focus and remote iris is mounted.
 Chemiluminescence can be detected in high sensitivity through use of a four-step pixel binning function.
- Fluorescence can be detected in high sensitivity using a UV transmitted illuminator and incident blue LED.
- Wider range of fluorescent reagents can be detected by the use of green and red incident LEDs in addition to the blue one (Optional).
- The operability is remarkably improved by the newly designed Image Reader software.

2 System Configuration and Parts Identification

< System configuration of LAS-3000: An Example >

< Internal view of intelligent dark box (IDX) >

Name	Description
(1) Camera head	CCD cooling function and image data output USB port
2 Intelligent dark box (IDX)	Dark box
3 Lens unit	F0.85/43mm
(4) Incident light source	Blue LED (460nm) incident light sources
	White LED incident light sources
	Green LED (520nm) incident light sources (Optional)
	Red LED (630nm) incident light sources (Optional)
5 Transmitted light source	312nm UV light source or White transmitted light source

6 Filter	Y515Di (filter for blue LED)
	605DF40 (EtBr detecting filter)
	510DF10 (GFP detecting filter)
	575DF20 (filter for green LED) (Optional)
	R670 (filter for red LED) (Optional)
7 Sample tray	EPI tray (for chemiluminescence and incident light source)
	DIA tray (for transmitted light source)
	NP tray (for titer plate)
	DIA-UV tray (for UV transmitted light source)
8 Computer	Exposure operation and analysis work
Pictrography	High quality digital color printer

Image Reader Software

The Image reader software consists of Lite and Pro modes. In the Lite mode, luminescence can be easily detected because a detection method has been set. In the Pro mode, advanced combination can be set.

< Screen in Lite mode >

< Screen in Pro mode >

*Please use the Pro mode, in case of using green LED or red LED incident light source. Please use the Lite mode for imaging of chemiluminescence, digitizing, EtBr detection by UV light source, fluorescence detection by blue LED, using the preset conditions.

3 Preparation for Exposure

1 Activation

Step	Operation		
1	Turn ON the power switches of IDX, computer and peripheral equipments.		
2	Start up reading software LAS-3000 ImageReader. → A message is displayed until the LAS-3000 is prepared.		
	Confirm that the temperature setting state of the CCD is ready.		
3	Chemiluminescence		
	< Ready state > READY -30 °C Chemiluminescence		
60	• After a few minutes, the LAS-3000 will be		
	 able to be in readable state. In the readable state, only the power LED light is lit in green. In the normal state, the cooling temperature of a CCD camera is set to -30°C. Method/Tray position and Dark box option setting can be executed even if the temperature setting state of CCD is Not Ready. A sample can be set during the time required for the temperature change. 		
Note C	• The power switches of the IDX and per-		
	 sonal computer can be turned ON in any order. Turn ON the power of the pictrography first when a pictrography printer is connected by SCSI. The ready state is entered when the cooling temperature is stabilized at -30.0°C. 		
l	ing temperature is stabilized at -30.0°C.		

2 Setting of Samples

using the dent as reference.

Exposure of Samples (Lite mode) The light source and filter are set by the pre-determined combination.

*Please use the Lite mode for imaging of chemiluminescence, digitizing, EtBr detection by UV light source, fluorescence detection by blue LED, using the preset conditions. Please use the Pro mode, in case of using green LED or red LED incident light source. (See Page 11 of this Operation Guide)

3 Adjustment of Focus

4 Exposure Type and Exposure Time Setting

* See Page 12 of this Operation Guide.

Tips Upper limit of the Manual Setting sec. (-1999) min. (-1800) hr.(-30)

5 Setting of Sensitivity

6 Tips	The sensitivity is improved by binning mutiple pixels into one big pixel. Smoothing between the interpolation of pixels causes the numbers of pixels to increase. The sensitivity becomes higher in the order standard, High, Super and Ultra.						
	Sensitivity Original pixels (W×H) Number of pixels(W×H)						
	Standard 1536×1024 1536×1						
	High 768×512 1536×1024						
	Super	384×256	1536×1024				
	Ultra	192×128	1536×1024				

* See Page 14 of this Operation Guide.

Only in the Chemiluminescence mode, Image acquire & Digitize function can be used. This function can expose chemiluminescence and digitize images consecutively at one click.

6 Exposure

7 Saving the Exposed Image

< Screen state after exposure >

in the File menu.

Operation

Click the Save button or select the Save function

Step

8 Printing the Exposed Image

9 Termination

- **3** Terminate the personal computer.
- **4** Turn OFF the IDX power switch.

5 Exposure of Samples (Pro mode) The desired light source and filters can be selected for exposure.

*Please use the Pro mode, in case of using green LED or red LED incident light source. Please use the Lite mode for imaging of chemiluminescence, digitizing, EtBr detection by UV light source, fluorescence detection by blue LED, using the preset conditions.

6 Caution on Use

1 Sample Tray

- We recommend the use of a hybridization bag to prevent the membrane from being dried. In such a case, fix the portion, not covered with the membrane, to the tray using a seal so as to keep the membrane flat.
 A sharp image can be obtained.
- 2. Wash the sample tray with water and dry it sufficiently before use when it is unclean.

Appendix

Exposure Type

Precision Exposes for the entire time set in Exposure Time. Increment Exposes for each time set in Interval Time and accumulates the images. Repetition Exposes for each interval time set in Interval Time and displays images for each section. Program Exposure time and interval time can be set. Each image file and integrated image files can be generated and saved.

Operation required to be carried out for exposure with green and red LED incident light sources (Optional)

1. Changing the LED incident light sources

This operation should be carried out with Tray placed in position 4. The same procedure should be carried out respectively for the right and left sides. (1) Removing the incident light source * See Page 7 of this Operation Guide 2 (2).

(2) Installing the incident light source

OTips Blue LED unit can be handled by the same way.

- 2. Installing the optional filter.
 - (1) Select Filter Customization from Option menu with the IDX door closed.
 - (2) Click "Filter down" button.
 - ③ Open the IDX door after the filter changer has come down.

(5) Enter the name of the option filter in the box and press the OK button.						
	Filter Customization					
	change the Filter	and its name.				
	Current Name	New Name				
	1: Through	Through				
	2: 605DF40	605DF40				
	3: Y515Di	510DF10				
	4: 510DF10	575DF20				
	5: R670	R670				
	OK Filter	down Cancel				

Detection Sensitivity and Number of Pixels

Sensitivity	Number of pixels (W \times H)	Image file size
High Resolution	3072 × 2048	12.6 MB
Standard	1536 × 1024	3.15 MB
High	1536 × 1024	3.15 MB
Super	1536 × 1024	3.15 MB
Ultra	1536 × 1024	3.15 MB
High Binning	768 × 512	786 KB
Super Binning	384×256	197 KB
Ultra Binning	192 × 128	49.2 KB

Detection Reagents and Settings of LAS-3000

		Setting of LAS-3000			
Classification	Reagent name	Lite mode	Pro mode		
		Method	Light	Filter	Iris
	ECL	Chemiluminescence	none	Through	0.85
	ECL Plus	Chemiluminescence	none	Through	0.85
	Lumi-Light Plus	Chemiluminescence	none	Through	0.85
Chamiluminaaaanaa	Renaissance	Chemiluminescence	none	Through	0.85
Chemiuminescence	Super Signal®	Chemiluminescence	none	Through	0.85
	Bright-Star	Chemiluminescence	none	Through	0.85
	CDP-Star	Chemiluminescence	none	Through	0.85
	CSPD	Chemiluminescence	none	Through	0.85

Classification			Setting of LAS-3000			
		Reagent name	Lite mode	Pro mode		
			Method	Light	Filter	Iris
		SYBR [®] Green I	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
	Intercalate	SYBR [®] Green II	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		SYBR [®] Gold	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		EtBr	Fluorescence:EtBr	UV(312nmDIA)	605DF40	2.8
		ТОТО-З	-	Red(630nmEPI)	R670	0.85
		SYPRO [®] Ruby	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		SYPRO [®] Orange	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
	Protein	SYPRO [®] tangerine	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
	stain	Deep Purple	-	Green(520nmEPI)	605DF40	0.85
		SYPRO [®] Red	-	Green(520nmEPI)	605DF40	0.85
		Pro-Q Diamond	-	Green(520nmEPI)	575DF20	0.85
		FITC	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		FAM™	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		Alexa [®] 488	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		Cy2™	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		Cy3™	-	Green(520nmEPI)	575DF20	0.85
	Labeling	HEX™	-	Green(520nmEPI)	575DF20	0.85
		NED	-	Green(520nmEPI)	605DF40	0.85
Fluorescence		Tetramethylrhodamine	-	Green(520nmEPI)	575DF20	0.85
dye		R-phycoerythrin	-	Green(520nmEPI)	575DF20	0.85
		TAMRA™	-	Green(520nmEPI)	575DF20	0.85
		BODIPY 576/589	-	Green(520nmEPI)	605DF40	0.85
		Rhodamine Red	-	Green(520nmEPI)	605DF40	0.85
		5-ROX™	-	Green(520nmEPI)	605DF40	0.85
		Alexa [®] 514 532 546 555	-	Green(520nmEPI)	575DF20	0.85
		Alexa [®] 568 594	-	Green(520nmEPI)	605DF40	0.85
		DiD	-	Red(630nmEPI)	R670	0.85
		BODIPY	-	Red(630nmEPI)	R670	0.85
		Cy5™	-	Red(630nmEPI)	R670	0.85
		Alexa [®] 633 635 647		Red(630nmEPI)	R670	0.85
		Alexa [®] 660 680	-			
	-	EGFP	Fluorescence:GFP	Blue(460nmEPI)	510DF10	0.85
	Fluorescent	ECFP	Fluorescence:GFP	Blue(460nmEPI)	510DF10	0.85
	protein	RFP	-	Green(520nmEPI)	605DF40	0.85
	Chemifluo- rescence	Attophos *1	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		ECL Plus	Fluorescence:SYBR Green	Blue(460nmEPI)	Y515-Di	0.85
		HNPP	-	Green(520nmEPI)	575DF20	0.85
		DDAO phosphate®	-	Blue(460nmEPI)	R670	0.85
		Silver stain	Digitize:DIA	White(DIA)	Through	2.8
Diatri		CBB stain	Digitize:DIA	White(DIA)	Through	2.8
	ize	X-ray film	Digitize:DIA	White(DIA)	Through	2.8
		NBT/BCIP	Digitize:DIA	White(DIA)	Through	2.8

 \ast 1: Attophos cannot be used for detecting the nucleic acid on Nylon membrane.

Note) The pre-label method detection by UV illumination is not licensed.

Support services of LAS-3000 is provided by your local supplier.

LIFE SCIENCE, INFORMATION PRODUCTS MARKETING DIV.

FUJI PHOTO FILM CO., LTD.

PHONE:+81-3-3406-2201 FAX:+81-3-3406-2158 e-mail:sginfo@tokyo.fujifilm.co.jp URL:http://home.fujifilm.com/products/science/index.html