Themen für studentische Studien-/ Abschlussarbeiten	Zielgruppe
 Endoskopische Bildgebung der Fluoreszenz-Lebensdauer Aufbau bzw. Modifizierung eines bestehenden FLIM-Bildgebungssystems Anpassung eines Endoskopdesigns zur Integration innovativer Mikrospiegel Programmierung einer Bildrekonstruktionssoftware Validierung des endoskopischen FLIM-Bildgebungssystem an Phantomen und Gewebeproben 	Ingenieurwesen
 Erweiterte Daten- und Bildverarbeitung bei polarisationssensitiver optischer Kohärenztomografie Berechnung der lokalen polarisationsoptischen Eigenschaften der Probe als zusätzlicher Gewebekontrast tiefenaufgelöste Darstellung der Orientierung der optischen Achse, Verzögerung, Depolarisation Validierung durch Vergleich mit Referenzverfahren (Multiphotonenmikroskopie/SHG, Polarisationsmikroskopie) 	Physik, Ingenieurwesen, Informatik
 Bildgebung der Domänenwände in Ferroelektrika mit hochauflösender optischer Kohärenztomografie Bildgebung der Domänenwände im Ferroelektrikum Lithiumniobat (LiNbO3) Untersuchung der Dynamik der Domänenwandbewegung unter externen Feldern Konstruktion eines geeigneten Probenhalters zur präzisen Ausrichtung des ferroelektrischen Kristalls Korrektur des Dispersionsverlaufs von LiNbO3 im relevanten Wellenlängenbereich 	Physik
 Bestimmung der lokalen Sauerstoffsättigung aus Kamerabilddaten der Lunge Entwicklung eines geeigneten Versuchsaufbaues (Beleuchtung der Lunge mit unterschiedlichen Wellenlängen) Entwicklung eines geeigneten Phantoms Entwicklung von Algorithmen zur Auswertung der Kamerabilder und Bestimmung der lokalen Sauerstoffsättigung 	Ingenieurwesen
 Segmentierung von Gewebestrukturen der Lunge in 3D Datensätzen Weiterentwicklung bestehender Algorithmen Identifikation und Abgrenzung von einzelnen Lungenbläschen (Alveolen) und Tracking in dynamischen Messdaten der bewegten Lunge Visualisierung der Segmentierungsergebnisse in geeigneter Form 	Ingenieurwesen
 Entwicklung einer Highspeedpumpe für Aortenklappenstimulation Entwicklung eines Versuchsstandes für die künstliche Stimulation der Aortenklappe ex vivo Vergleich und Auswahl geeigneter Methoden für die Stimulation nach festgelegten Parametern Aufbau und Ansteuerung des Systems Entwicklung einer Benutzeroberfläche in LabView 	Ingenieurwesen, Maschinenbau

 Anwendung des Kinect 2.0 Sensors der Microsoft X-Box zur Lage- und Bewegungsbestimmung von Objekten im 3D-Raum Aufbau eines Versuchstandes und Entwicklung geeigneter Phantome Einbindung des Sensors in eine grafische Benutzeroberfläche mittels LabView Entwicklung von Algorithmen zur Objekterkennung und Auswertung der Messsignale 	Ingenieurwesen
 Autofokussystem mittels Phasenkontrastsensor für die Videobildgebung (Praktikumsthema) Konstruktion einer feinjustierbaren Linsenhalterung für den Phasenkontrastsensor Ausgleich von Achsfehlern Entwicklung einer Benutzeroberfläche in LabView für die Auswertung und Anzeige der Fokusposition 	Ingenieurwesen
 Automatisierung einer Teleskopoptik (Praktikumsthema) Entwicklung und Konstruktion einer miniaturisierten und motorisierten Vorsatzoptik für die OCT mittels Servomotoren und Treibersteuerung (bspw. mittels Arduino) Umsetzung einer rechnergestützten Positionierung mit hoher Geschwindigkeit und Präzision 	Ingenieurwesen
 Modellierung der Mittelohrfunktion auf Basis von OCT-Mittelohraufnahmen Segmentierung der Strukturinformation basierend auf OCT- und μCT-Daten Simulation (FEM) der Trommelfellfunktion mit einem erweiterten anatomischen Modell Abgleich mit funktionellen Messergebnissen (Messung der Trommelfell- und Ossikelschwingung mit Doppler-OCT) Berechnung relevanter akustomechanischer Parameter des Mittelohrs 	Maschinenbau, Physik