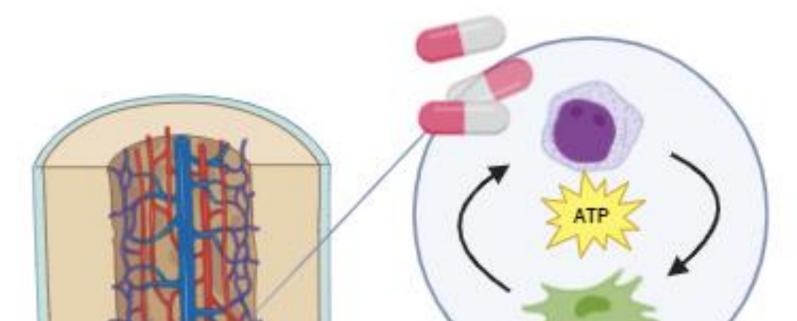


Investigation of metabolic crosstalk and reprogramming in the leukemic niche and its impact on drug sensitivity

Prof. Martin Bornhäuser, Dr. Mohamed Elgendy, Prof. Manja Wobus, Prof. Frank Bucholz


Abstract

Acute myeloid leukemia (AML) is a group of malignant disorders characterized by accumulation immature myeloid blasts due to genetic mutations in hematopoietic and progenitor stem cells. Despite advancements in treatment, a significant number of AML cases relapse due to drug resistance. This resistance is partially attributed to dysregulated metabolism in AML cells, which enhances energy production to counteract drug cytotoxicity [1]. The two major energy-production pathways are cytosolic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). According to Otto von Warburg, tumors often switch to glycolysis regardless of oxygen availability – the Warburg Effect. However, recent findings suggest that some cancer cells exhibit metabolic flexibility, adapting both glycolysis and OXPHOS to meet metabolic challenges and local nutritional conditions [2,3]. Moreover, the tumor microenvironment plays a crucial role in cancer cell metabolic dependency. AML resides in the bone marrow microenvironment, characterized by a complex cellular structure. Among these, mesenchymal stromal cells (MSCs) are notable for their ability to support AML development [4]. Numerous studies have shown that MSCs contribute to chemoresistance by altering AML cell metabolism [5,6]. However, the role of metabolic dependency and the impact of MSCs on it among AML cases with different genetic backgrounds remains unknown.

Objective

To characterize metabolic reprogramming and crosstalk in the leukemic bone marrow niche and examine its impact on AML response to anti-cancer therapy.

Prelimenary work

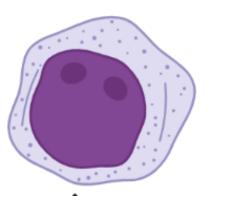
Real-time metabolic profiling of AML cells

KG1 (complex karyotype) K562 (bcr/abl) HL-60 (t(5;17)) Kasumi-1 (RUNX1/RUNX1T) Molm-13, MV 4-11 (FLT3-ITD) OCI AML-2 (DNMT3a) OCI AML-3 (NPM1/DNMT3A)

metabolically plastic

Methods

Flow cytometry


metabolically commited

Working program

Cytarabin Daunorubicin Targeted drugs (Bcl-2, Flt-3)

a. AML monoculture

DNA analysis

Metabolomics

Viability (PI staining) Apoptosis (Annexin V assay)

Apoptosis (Annexin v as:
 Cell cycle analysis

• Real-Time metabolic analysis

- Metabolic imaging
- NMR spectroscopy
- Gene expression analysis
- Epigenetic analysis

References

- 1. Mesbahi, Yashar, et al. "Exploring the metabolic landscape of AML: from haematopoietic stem cells to myeloblasts and leukaemic stem cells." Frontiers in Oncology 12 (2022): 807266.
- 2. DeBerardinis, Ralph J., and Navdeep S. Chandel. "Fundamentals of cancer metabolism." *Science advances* 2.5 (2016): e1600200.

indirect

3. Elgendy, Mohamed, et al. "Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis." Cancer cell 35.5 (2019): 798-815.

direct

- 4. Bolandi, Seyed Mohammadreza, et al. "A role for the bone marrow microenvironment in drug resistance of acute myeloid leukemia." Cells 10.11 (2021): 2833.
- 5. Forte, Dorian, et al. "Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy." Cell metabolism 32.5 (2020): 829-843.
- 6. You, Ruolan, et al. "Bone marrow microenvironment drives AML cell OXPHOS addiction and AMPK inhibition to resist chemotherapy." Journal of Leukocyte Biology 112.2 (2022): 299-311.

Contact information

- Prof. Martin Bornhäuser
 Martin.Bornhaeuser@ukdd.de
- Dr. Mohamed Elgemdy Mohamed.Elgendy@ukdd.de
- Prof. Manja Wobus Manja.Wobus@ukdd.de

