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In contrast to trees, the ramifications of 
arborescent columnar cacti exhibit distinct 
constrictions at the junction between branch 
and stem.
Aim of our investigations is to analyse the 
integrity and stability of cactus ramifications 
with state of the art engineering techniques. 
One approach is to set up detailed Finite 
Element Models (FEM) with the knowledge 
from extended morphological and anatomical 
investigations on cactus ramifications and the 
mechanical properties of the constituent 
cactus  tissues.
The results might help to develop alternative 
concepts for fibre-reinforced composites 
with limited design space.Pilosocereus pachycladus
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The cactus wood beneath the succulent cortex, normally forming a 
broad cylinder of wood lamellae (A–A'), is reduced at the branch base 
to a compact socket (B–B') with distinct indentations on the adaxial (2) 
and abaxial (3) side. The longitudinal running wood lamellae show a 
higher degree of interconnection in the branching region (1). On 
microscopic level the cactus wood resembles diffuse porous 
hardwood. Its lamellar structure is due to the huge size of the rays.
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Under self-weight conditions, the results show that the load adaptation 
does not follow the rule of stress homogenisation and minimisation by 
contour softening as described for hardwood trees (CAO model; 
Mattheck, 1990). The succulent cortex limits the secondary growth of 
the wood, hence it is more advantageous to tune the stress state by 
indentations to already predominant fiber directions (1,2). Another 
surprising detail is that compression stress on the abaxial side is partly 
dissipated by the parenchymatous cortex (3).
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The material tests were performed as quasi-static tension (cuticle), 
bending (wood) and compression (pith & cortex) tests on a Zwicki-Line 
material testing machine by Zwick/Roell.


