

Characterisation of siloxanes in food contact

E. Droth, L. Gerl, T. J. Simat Chair of Food Science and Food Contact Materials, TU Dresden, Germany

Introduction

Food contact materials made from crosslinked polydimethylsiloxanes (PDMS) have a wide range of applications due to their properties (non-sticking effect, high temperature stability, flexible form) especially as baking moulds as well as coatings on baking paper. Non-crosslinked PDMS can be used in dependence of their molar masses as defoamers, lubricants and releasing agents in certain food production processes. Extractable siloxanes can be cyclic (D4, D5,...)*, linear (L3, L4,...)* or OH-terminated PDMS (* number of Si-O-units).

The aim of the present work was to characterise the composition of siloxanes that are intended for food contact. Investigations on the siloxane distribution pattern by HPLC-ELSD (D14 - D50) and GC-MS (volatile siloxanes) are carried out from two silicone oils (defoamers) and a releasing agent in comparison with extracts of crosslinked silicone elastomers, either from non- or post-cured baking moulds. Further investigations of silicone elastomers show the influence of temperature and time as well as the air flow on the desorption behaviour of siloxanes in a simulated post-curing process.

Summary

The total distribution of siloxanes reflects the potential migrants in direct food contact. Mainly higher-molecular siloxanes can be found in silicone oils, which have no significant absorption in the human GI (worst case calculated limit: D17). The distribution pattern shifts towards high-molecular siloxanes with increasing viscosity of the investigated silicone oils. Cyclic and linear siloxanes \leq D20/L20 have been shown to migrate via gas phase in a simulated baking process (200°C, 1 h). In extracts of the investigated silicone elastomers exclusively cyclic siloxanes were detected. The industrial post-curing process (200°C, 4 h) decreases the amount of low-molecular siloxanes in baking moulds with a significant discrimination of the siloxanes \leq D24. The postcuring is necessary to comply with the requirements for the volatile organic compounds (VOC) of 0.5 % (recommendation VX of the BfR). By this process, the proportion of VOC in the investigated material (layer thickness 1.9 mm) was reduced from 1.03 % to 0.38 %. The VOC-values were shown to decrease with increasing temperature, time and air flow in a simulated post-curing process.

Characterisation

- total distribution of siloxanes from investigated samples:
 - potential migrants in direct food contact
 - major portion in non-crosslinked PDMS: higher-molecular siloxanes > D50
 - siloxanes larger than D17 (worst case calculation): no significant absorption in the human GI
 - with increasing viscosity: shift of the distribution pattern towards higher-molecular siloxanes (extended retention time)

ğ

Ab

Fig. 2: HPLC-ELSD-chromatogram: non-crosslinked PDMS dissolved in isooctane (each time 10 g/l), D17 = 1260 Da limit (for silicon chemistry to comply with 1000 Da limit in carbon chemistry)

HPLC-ELSD: total distribution relevant for direct food contact

Elastomers (crosslinked PDMS)

and post-cured baking moulds (layer thickness: 1,9 mm)

- thermodesorbable siloxanes from investigated samples in a simulated baking process (200°C, 1 h):
 - cyclic and linear siloxanes \leq D20/L20 (potential migrants by gas phase transfer) in different amounts and conditions depending on the material

Time [min]

Fig. 3: GC-MS chromatogram: non-crosslinked PDMS after thermodesorption with cryo focussing, each time 1 g material, 200°C, 1 h, N_2 -flow (30 ml/min), cooling agent: EtOH/liquid N_2

- GC-MS: distribution of volatile cyclic and linear siloxanes up to D20 or L20 depending on the thermodesorption conditions
 - relevant for gas phase transfer at baking processes

Fig. 5: GC-MS chromatogram after thermodesorption with cryo focussing: non-post-cured and post-cured baking moulds in a simulated baking process (200°C, 1 h)

function of temperature und time

- n-pentane extracts of the investigated baking moulds (layer thickness 1,9 mm):
 - exclusively cyclic siloxanes
 - by industrial post-curing process (200°C, 4 h, air flow: 120 ml/min/g silicone): significant discrimination of the siloxanes \leq D24
 - compared to non-crosslinked PDMS: no relevant amount of higher-molecular siloxanes > D50 in the extractables
- thermodesorbable siloxanes from investigated samples in a simulated baking process (200°C, 1 h):
 - exclusively cyclic siloxanes (potentially relevant migrants)
 - discrimination of cyclic siloxanes compared to non-post-cured baking moulds (same conditions)

Influence factors on a simulated post-curing process

simulated post-curing process of crosslinked PDMS in the thermodesorption-furnace at an air flow of 15 ml/min/g silicone and variable temperature and time conditions

depending on the conditions

(due to lower air flow), comparable dimension → **applicability** of the simulation