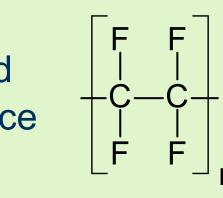
ECHNISCHE /ERSITAT

Emissions of PFAS from Fluoropolymer-coated Cookware - Analysis by TD-GC-MS


Nancy Wolf, Lina Müller, Thomas Simat*

Technische Universität Dresden, Chair of Food Science and Food Contact Materials, Bergstr. 66, D-01062 Dresden; *Contact: thomas.simat@tu-dresden.de

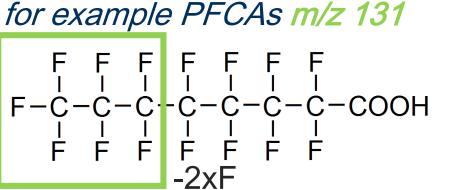
Introduction

• Non-stick coated cookware is often heated to high temperatures during use. Temperatures up to 250 °C are possible, for example when roasting nuts on the stove or baking in the oven.

- Non-stick coatings of commercially available cookware are mostly based on **polytetra-fluoroethylene (PTFE)**. PTFE is a polymer of the substance group of per- and polyfluoroalkyl substances (PFAS).
- Non-polymeric PFAS are used as production aids in the fabrication of PTFEcoatings. Some of these surfactants are persistent, accumulative and immune system suppressing [1]. They should be eliminated during sintering at > 380 °C, which is the last step in the production of coatings. However, in studies investigating PTFE-coatings, PFAS could be detected. Moreover, thermal degradation of PTFE to perfluorocarboxylic acids has been reported [2].

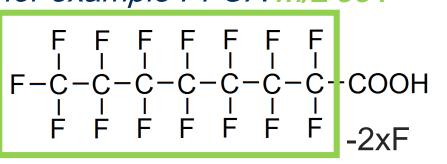
Conclusion

- PTFE-based non-stick coatings for food contact were heated at 250 °C for 30 min and the emissions were analyzed by TD-GC-MS.
- It was proven that besides fluorotelomer alcohols (FTOHs), which are the only PFAS commonly analyzed by GC-MS, also perfluorocarboxylic acids (PFCAs) and perfluoroether acids (PFEAs) as well as their thermolysis products, perfluoro ethers (PFEs), can be analyzed by GC. However, perfluorosulfonic acids (PFSAs) were not detectable.
- A screening for PFCAs and FTOHs is possible by electron impact ionization (EI) using group specific SIM fragments. Confirmation of identity has been done by EI SCAN as well as **chemical ionization (CI)** SIM measurements.
- Four commercially purchased baking trays were analyzed. In three samples there

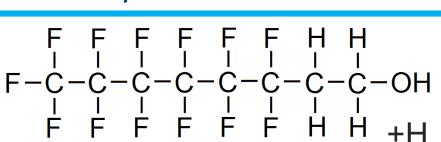

•	s chromatograph PFAS as well a	ne emission of PFAS from ny – mass spectrometry as possibilities for a scree	(TD-GC-MS).	PFCAs ($C_{13} - C_{23}$) were quantified in and third thermal extraction of th 1 ng/dm ²) in all samples. Thus, there from the investigated PTFE coatings
TD-GC-MS instrum For calibration, analytes were Tenax [®] and activated carbon In the thermal desorption	injected directly in using a microlitre	syringe followed by purging	g with nitrogen.	Identification and Quantified Identification of each analyte was verified 1 Retetion time
autosampler oven (2), collected on a trap (3) and desorbed again to be transferred to the GC column (4). A trifluoropropylmethyl polysiloxane column (Rtx200-MS) was used for separation. The MS detection (5) was performed using electron impact as well as chemical ionization in SIM and SCAN mode. [3]			 2 Electron impact ionization (EI) SIM mode: specific fragments allow for example PFCAs m/z 13 F F F F F F F F 	
				 F F F F F F F F F F F F F F F F F F F
			 3 Chemical ionization (CI) • SIM mode: substance-specific fragm for example PFOA m/z 331 	
1 - Injection2 - AutosampInto tubes,tube desorptionanalytes in250 °C, 10 mmethanol50 mL/min H	n trap desorption n, 300 °C, 5 min,	4 - GC 30 °C (10 min), 10 °C/min , 250 °C (12 min) column: Rtx200-MS	5 - MS EI/CI SCAN/SIM	F F F F F F F F $ $ $F - C - C - C - C - C - C - C - C - C -$
	Split 1:10	(30 m x 0.25 mm x 1.0 µm)		Quantification was performed by EI-SII

were no PFAS detectable (LOD: 1 ng/dm²). In one sample several long chain in the range of **0.5 to 34.4 ng/dm²**. After a second the coatings, no PFAS were detectable (LOD: re is no detectable heat induced formation of PFAS s up to 250 °C.

fication


ified by three characteristics:

w screening for PFAS groups



for example FTOHs m/z 95 F-C-C-C-C-C-C-C-OH Ė Ė Ė Ė Ė Ė Ĥ Ĥ

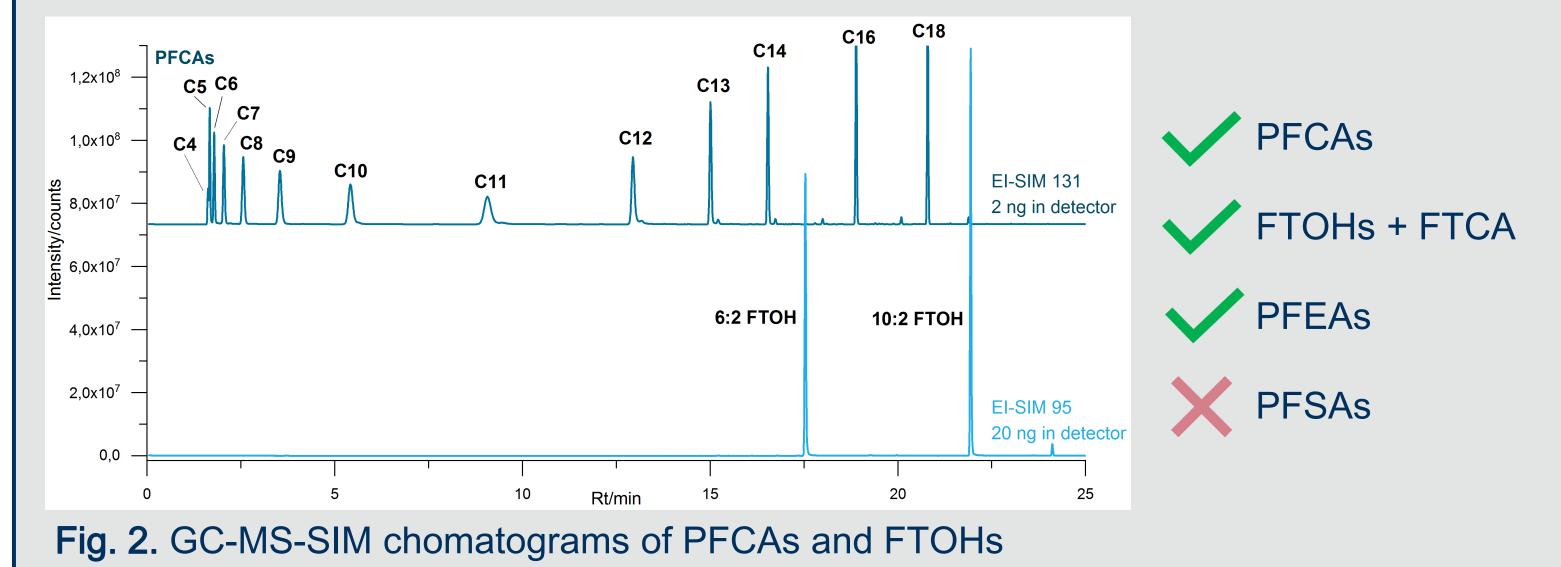
- n pattern for confirmation
- ments for confirmation

for example 6:2 FTOH m/z 365

SIM measurements. Instrumental detection limits of 0.001 - 0.04 ng were achieved (signal-to-noise ratio S/N = 3).

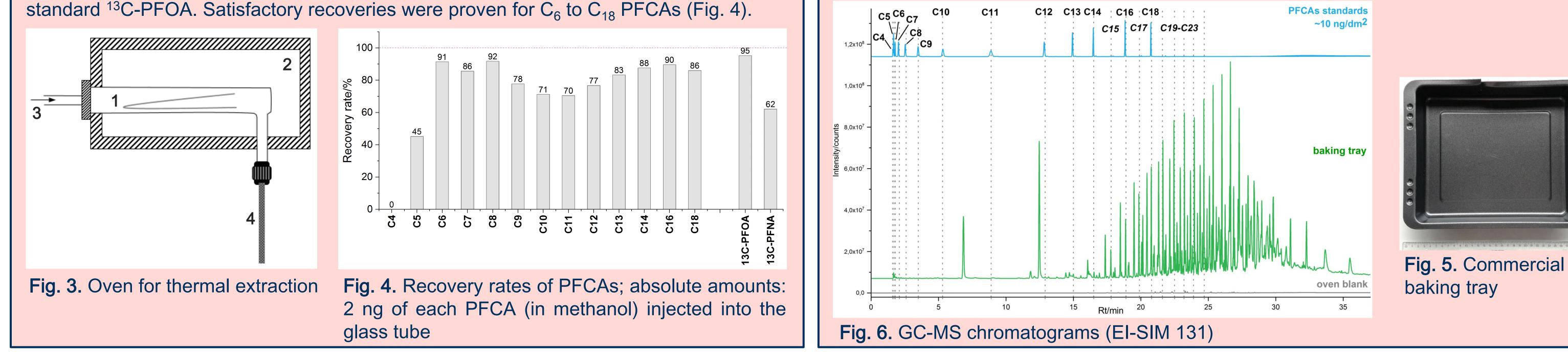
Selected analytes

In this study, 27 analytes were considered. The selection was based on their use in the production of fluoropolymer-based coatings for cookware and on reports from the literature, which investigated PFAS from these materials.


13 Perfluorocarboxylic acids (PFCAs) for example perfluorooctanoic acid (PFOA)	3 Fluorotelomers (alcohols (FTOHs), acid (FTCA)) <i>for example 6:2 fluorotelomer alcohol (6:2 FTOH)</i>		
F F F F F F F F $F - C - C - C - C - C - C - C - C - C -$	F F F F F F H H $I I I I I I I I$ $F-C-C-C-C-C-C-C-C-OH$ $F F F F F F H H$		
6 Perfluorosulfonic acids (PFSAs) for example perfluorooctanesulfonic acid (PFOS)	5 Perfluoroether acids (PFEAs) for example 3H-perfluoro-3-((3-methoxypropoxy)-		
F F F F F F F F F-C-C-C-C-C-C-C-C-SO₃H F F F F F F F F	<i>propanoic acid) (DONA)</i>		

Thermal extraction of coatings

Thermal extraction of the coatings was performed in the apparatus shown in Fig. 3. A coating (on a metal stripe, 30 cm x 2 cm) was placed in a glass tube (1) and ¹³C-PFNA was added as internal standard. The glass tube was incubated in the preheated oven (2) at 250 °C for 30 min. A nitrogen flow of 50 ml/min (3) flushed the analytes desorbed from the sample into the adsorption tube (4), which was previously spiked with the injection


GC-detectable analytes

21 of the 27 analytes were detectable via GC-MS (some of them shown in Fig. 2). Sulfonic acids were not detectable due to their low volatility.

PFAS from commercial samples

Four commercial baking trays were examined for their emission of PFAS. There were no PFAS detectable in three of the samples (LOD: 1 ng/dm²). In one sample (Fig. 5) several long chain PFCAs ($C_{13} - C_{23}$) were quantified in the range of 0.5 to 34.4 ng/dm² (Fig. 6). After a second and third thermal extraction of the coatings, no PFAS were detectable (LOD: 1 ng/dm²) in all samples.

Literature

[1] Bundesinstitut für Risikobewertung: PFAS in Lebensmitteln. Stellungnahme Nr. 020/2021 [2] Schlummer, M. et al. Chemosphere 2015 129, 46-53 [3] Markes international 2021, Application Note 158

Acknowledgement Thanks to the Federation of European manufacturers of Cookware and cutlery (FEC) for their support.

50. Deutscher Lebensmittelchemikertag 19.-21.09.2022, Hamburg