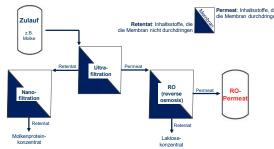


Reinigungsprozesse in der Lebensmittelindustrie -Überwachung von Reinigungsmittelrückständen unter Einsparung von Wasser

Katja Schreiber¹, Paul Saket^{1,2}, Ralf Kuchenbecker¹, Thomas Simat²

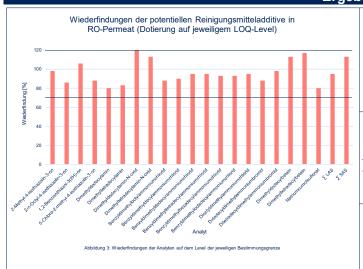

¹Milk & Whey Ingredients by Sachsenmilch, An den Breiten, 01454 Wachau OT Leppersdorf ²Technische Universität Dresden, Bergstr. 66, 01062 Dresden


Zusammenfassung

Die Herstellung qualitativ hochwertiger und sicherer Lebensmittel geht mit der sorgfältigen Reinigung und Desinfektion der verwendeten Anlagen im Lebensmittelbetrieb einher. Die Anwesenheit von Säuren und Laugen nach erfolgter Cleaning in Place (CIP)-Reinigung wird standardgemäß über den Leitwert bestimmt, gibt jedoch keinen Aufschluss über die Zusammensetzung und Gehalte von Rückständen aus den Reinigungsmitteln, wie Tenside, Lösungsvermittler und Biozide. Wirkstoffe, die als Pestizide (Benzyldimethylalkylammoniumchlorid und Dialkyldimethylammoniumchlorid) zugelassen sind, erfordern besonders niedrige Bestimmungsgrenzen, um die jeweiligen rechtlichen Vorgaben zu erfüllen [4]. Rückstände anderer Substanzen sollten so gering wie möglich sein. Die Validierung für alle Analyte erfolgte daher nach den Kriterien der Pestizidanalytik gemäß SANTE 11312/2021 [2]. Für jeden Analyten konnte die geforderte Wiederfindung von 70 – 120 % im Konzentrationsbereich der Bestimmungsgrenze (LOQ, 0,005 - 0,05 mg/kg) erreicht werden. Für die Permeate der Umkehrosmoseanlage konnte anschließend in Prozesskontrollen gezeigt werden, dass alle Analyte unter der Bestimmungsgrenze der validierten Methode lagen. Diese neuen Kriterien sind nun Grundlage für die Bewertung des Einsatzes des bei der Umkehrosmose gewonnenen Wassers zur Reinigung von Produktionsanlagen in einer Molkerei.

Hintergrund

Im Rahmen stetiger Prozessoptimierung wird seit Bestehen des Milchverarbeitungsstandortes Leppersdorf ein nachhaltiges Wassermanagement im Hinblick auf ökonomische und ökologische Gesichtspunkte priorisiert. In Molkereien werden circa 80 % des Frischwasserbedarfes für die Reinigungszyklen von Produktionsanlagen aufgewendet. Daraus ergibt sich für die Ressource Wasser ein möglichst effizienter und sparsamer Einsatz. In der milchverarbeitenden Industrie ist die Membranfiltration durch seine vielseitigen Anwendungen und Vorteile zu einem nahezu konkurrenzlosen Verfahren bei der Prozessierung von unterschiedlichen Produkten wie Milch oder Molke geworden [1]. Durch den wasserreichen Rohstoff Milch kann bei Membranfiltrationsprozessen eine nachhaltige Wertschöpfung in die Praxis umgesetzt werden. Im Verarbeitungsprozess kann während der Konzentrierung/Filtration mittels Umkehrosmose (reverse osmosis, RO) das anfallende RO-Permeat, das keiner weiteren Verwendung unterliegen würde, in ausreichenden Mengen entnommen und für spätere Reinigungszwecke genutzt werden (Abbildung 1). Die Verwendung des RO-Permeates als Frischwasserersatz in Reinigungsvorgängen kann aber nur nach erfolgter Risikobewertung im Hinblick auf migrierende Reinigungsmittel erfolgen. Bis heute werden industrielle Reinigungsprozesse hauptsächlich durch den Leitwert, den pH-Wert und/oder die Messung des chemischen Sauerstoffbedarfs (CSB) kontrolliert und bewertet. Vor dem Hintergrund, dass hierbei Reinigungs-mittelrückstände nicht erfasst werden können, erfolgte die Entwicklung einer Methode zur Bestimmung von Reinigungsmittelrückständen (Abbildung 2) in RO-Permeat mittels LC-MS/MS.


	Konservierung des Reinigungsmittels		verbindungen: kung	Lösungsvermittler im Reinigungsmittel
	S-N	x = 6, 8, 10, 12, 14, 16	$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \end{array} \\ x = 6, 8, 10, 12 \end{array} \begin{array}{c} \text{Cl}^{\odot} \\ \end{array}$	S. O
1,2-Benzisothiazol- 3(2H)-on	2-Methyl-4-iso- thiazolin-3-on	Benzyldimethylalkylammonium- chlorid	Dialkyldimethylammonium- chlorid	Natriumcumolsulfonat
	Ani	onische und amphotere Ten	side: reinigende Wirkung	
~	·//	~\\\	>	
	Dimethyldodecyla	amin-N-oxid ö	Dimethylo	dodecylamin
O = S - ONa	x+y = 1114 ate (SAS)	ineare Alkylbenzolsulfon	x+y = 69	Dimethyldodecylbetain

LC-MS/MS-Parameter

Analyt (ESI positiv)	LOQ [mg/kg]	Pre- cursor	Product	CE [V]	Analyt (ESI positiv)	LOQ [mg/kg]	Pre- cursor	Product	CE [V]
2-Methyl-4-isothiazolin-3-on	0,020	116	53	58	Dioctyldimethylammoniumchlorid	0,005	270	41	76
		116	101	29			270	158	35
2-n-Octyl-4-isothiazolin-3-on	0,005	214	102	20	Didecyldimethylammonium- chlorid	0,005	326	41	110
		214	84	58			326	186	39
1,2-Benzisothiazol-3(2H)-on	0,050	152	77	41	Didodecyldimethylammonium-	0,005	382	41	98
		152	134	31	bromid		382	214	43
5-Chloro-2-methyl-4-isothiazolin-3-		150	58	36	Ditetradecyldimethylammonium-	0,005	438	41	103
on	0,020	150	87	46	bromid		438 272	242 104	49 27
Dimethyldodecylamin		214	57	27	Dimethyldodecylbetain	0,005	272	58	53
	0,005	214	85	26			300	104	28
Dimethyltetradecylamin	0,005	242	57	28	Dimethyltetradecylbetain	0,005	300	58	62
		242	71	28			Pre-		CE
Dimethyldodecylamin-N-oxid	0,002	230	58	52	Analyt (ESI negativ)	[mg/kg]	cursor	Product	[V]
		230	212	23	Natriumcumolsulfonat		199	183	-33
Dimethyltetradecylamin-N-oxid	0,002	258	58	60	Natriumcumoisulfonat	0,010	199	80	-51
		258	240	24	LAS-C10	ΣLAS 0,050	297	183	-44
Benzyldimethyloctylammonium-		248	91	29	LAS-C11		297	119	-72
chlorid	0,005	248	156	25			311	183	-54
Benzyldimethyldecylammonium-	_	276	91	32			311	119	-74
chlorid	0,005	276	184	26	LAS-C12		325	183	-50
Benzyldimethyldodecylammonium-	0,005	304	91	31			325	119	-83
chlorid		304	212	29	LAS-C13		339	183	-58
Benzyldimethyltetradecyl-		288	91	62	SAS-C14		339	119 80	-68 -32
ammoniumchlorid	0,005	332	240	30	SAS-C14 SAS-C15	ΣSAS 0,010	277 291	80	-32
		360	91	79	SAS-C15		305	80	-38
Benzyldimethylhexadecyl- ammoniumchlorid	0,005	360	268	32	SAS-C10 SAS-C17		319	80	-38
		388	91	81	57.5-017		010		1 30
Benzyldimethyloctadecyl- ammoniumchlorid	0,005								
ammoniumchlorid	1 1 1 1	388	296	35					

ESI positiv Säule: Kinetex XB-C18, Phenomene Mobile Phase A: MQ-Wasser + 0,1 % FA
Mobile Phase B: Acetonitril + 0,1 % FA ESI negativ Säule: Acclaim™Surfactants Plus, Thermo Scientific Mobile Phase A: Ammoniumacetat, 0.1 M, pH 5 Mobile Phase B: Acetonitril

Ergebnisse

Verwendung von isotopenmarkierten internen Standards (ILIS): interne Standardkalibrierung m d3-2-Methyl-4-isothiazolin-3-on a Beispiel 2-Methyl-4-isothiazolin-3externe Standardkalibrierung am Beispiel 2-Methyl-4-isothiazolin-3-or

Durch die Verwendung von ILIS wird der lineare Bereich vergrößert.

Carry-over: stark belastete Proben hinterlassen Rückstände in der HPLC!

Hochkonzentrierte Proben erfordern zwei anschließende Lösungsmittelinjektionen, um die nachfolgende Probe quantifizieren zu können.

Prozesskontrolle: Untersuchung von RO-Permeat

Tank Nr.	Anzahl Proben	Analytgehalte [mg/kg]				
1	1	alle < LOQ				
2	7	alle < LOQ				
3	2	alle < LOQ				
4	1	alle < LOQ				
5	9	alle < LOQ				
T						

Literatur [1] Melin, Thomas und Rautenbach, Robert (2007), "Membranverfahren: Grundlagen der Modul- und Anlagenauslegung", Springer-Verlag Berlin Heidelberg
[2] European Commission, Directorale-General for health and food safety. "Analytical quality control and method validation procedures for pesticide residues analysis in food and feed," SANTE 11312/2021
[3] B. Somnberger, Univerlateapheids der Reinigungschemie. Renninger-Malmshiem: oppert Verlag, 2020
[4] Delegierte Verordnung (EU) 20 161/27 zur Ergänzung der Verordnung (EU) Nr. 609/2013 des Europäischen Parlaments und des Rates im Hinblick auf die besonderen Zusammensetzungs- und Informationsanforderungen für Säuglingsanfangsnahrung und Folgenahrung und hinsichtlich der Heinfrundsichen, die bezöglich der Ernährung von Sauglingen und Veilschlichen bereitzustlichen sind. Europäische Kommission, 25.99.2015 Mi