

Cytotoxicity of Migrates from Plastic Packaging

A. Mieth, N. Mittag, M. Wildner, M. Alexowsky, L. Kaltwaßer, T.J. Simat TU Dresden, Chair of Food Science and Food and Skin Contact Materials, D-01062 Dresden

Abstract

Migrates (95% EtOH, 4 h, 60°C) of a food packaging film have been characterised analytically and additionally been tested in the neutral red assay [1] for their cytotoxicity using human cell lines (Hep-G2 and HT-29). Migrates contain several plasticizers (part of the printing) inks and lacquer), slip additives and antioxidants (part of PE food contact layer). 33 mg/l (50 mg/l) of the dissolved migration residue (food contact side of the packaging film) caused a 50% decrease (IC_{50}) of Hep-G2 (HT-29) viability. Yet, we could not fully identify the causative agents for the cytotoxic effect of the packaging film migrate.

The food contact surface of the packaging film consists of a LDPE/LLDPE-blend (fig. 1). The external printed surface is covered by a clear varnish. Printing inks and varnish contain a cellulose nitrate resin (CN).

Composition of the laminate

external surface 6.72 UM 10,60 µm

inner surface (food contact)

printing inks (CN) + varnish(CN) • PUR-primer **•** PET (metallised) PUR-adhesive LDPE/LLDPE-blend

Fig. 1: Microtome cut of the packaging film (photo: WIPAK Walsrode, Germany). PUR: polyurethane, PET: polyethylene terephthalate, (L)LDPE: (linear) low-density polyethylene

Characterisation of the inner and external surface migrates

Where do the migrating substances come from?

	plasticisers							slip additives		antioxidants			
	ATBC	NETSA	DEHA	DBS	Triacetin	EHDPP	DBP	Ole- amide	Eruc- amide	Irganox 1010	Irganox 1076	Irgafos 168	
migrate from external surface ^a	2.33	0.05	0.39	0.50	0.05	0.11	0.23	0.39	0.05	<5·10 ^{-5 b}	<8·10 ^{-5 b}	<7.10-5	
[mg/dm ²]													
clear varnish	+	-	+	+	+	+	+	+	-	-	-	-	
gold	+	+	+	-	+	+	-	-	+	-	-	-	
yellow/ printing black/green	+	+	+	-	+	+	-	-	-	-	-	-	
inks red	+	+	+	-	+	+	-	-	-	-	-	-	
white	+	-	-	-	+	+	-	-	-	-	-	-	
PUR-primer													
PET-film (metallised)	-	-	-	-	-	-	-	-	-	-	-	-	
PUR-adhesive													
PE-film	-	-	-	-		-	-	-	+	+	+	+	
migrate from inner													
surface ^a	0.56	0.02	0.52	0.47	0.005	0.04	0.001	0.11	0.12	0.005	0.22	0.22	
SML [mg/dm ²] ^c	OML	n.l.	3	OML	OML	0.4	0.05	OML	OML	OML	1	OML	
		set-off or migration								migration			

Migrates of the inner and external packaging surface have been investigated substances. concerning migrating Migration experiments (95% EtOH, 4 h, 60°C) simulated sterilization of fatty foods (121°C, 30-60 min) in the packaging as a worst case scenario [2]. 74% and 33% of the migration residue of the inner and external surface, respectively, could be clarified by RP-HPLC-DAD/CLND/ELSD/ MS, GC-MS/FID and ¹H-NMR (fig. 2). The identified plasticisers are part of the printing inks and the CN-varnish (fig. 2). They improve flexibility of the dried inks and varnish. They get from the printed external surface to the food contact side via set-off or migration through the film. The antioxidants and the slip agent erucamide, found in the inside migrate, originate from the PE-layer. No additives have been found in an ethanolic extract of the PET-layer (95% EtOH, 4 h, 60°C). conditions for Despite worst case identified SMLs of the migration substances have not been exceeded.

Fig. 2: Analysis of the single packaging film components and comparison with the migrates (95% EtOH, 4 h, 60°C) from the inner and external surface of the packaging. +: contained, -: not detectable. n.l.: not listed. OML: limited by overall migration limit of 10 mg/dm². ATBC: acetyl tributyl citrate, NETSA: N-ethyl-2/4-toluenesulfonamide, DEHA: diethylhexyl adipate, DBS: dibutyl sebacate, EHDPP: 2-ethylhexyl diphenyl phosphate, DBP: dibutyl phthalate. ^a Overall migrate (gravimetry): inner surface 3.0 mg/dm², external surface 11.4 mg/dm². ^b limit of detection (RP-HPLC-UV 220) nm). ^c according to Directive 2002/72/EC [4]

In vitro cytotoxic effect of the identified additives

Migrates of the inner surface of the packaging film and standard substances of the identified migrants were tested in the neutral red assay [1] on human cell lines Hep-G2 (hepato blastoma) and HT-29 (colon carcinoma). Oleamide, EHDPP, DBP and ATBC, in high concentrations also NETSA, showed a cytotoxic effect (fig. 3). So, about 28% (14%) of the cytotoxic effect of the inner surface migrate on Hep-G2 (HT-29) cells could be clarified so far, according to the concept of concentration addition [3]. This suggests that not all causative substance(s) have been identified in the migration residue so far.

[1] Borenfreund E, Puerner JA (1985). Toxicol. Lett. **24**, 11-124 [2] Directive 97/48/EC from 29th of july 1997 [3] Berenbaum MC (1985). J. theor. Biol. **114**, 413 Literature: [4] Directive 2002/72/EC from 6th of august 2002